Меню Закрыть

Как из площади найти длину и ширину: Как найти длину и ширину прямоугольника если известна площадь s=600м2

Содержание

Как найти длину и ширину прямоугольника, зная только периметр?

Итак, как найти размеры прямоугольника, если известны его площадь и периметр? Найдите размеры прямоугольника с периметром 100 м, площадь которого наибольшая.

  1. Объяснение: пусть «A» — площадь, а «P» — периметр прямоугольника. Пусть «х» — ширина, а «у» — длина. …
  2. Периметр = 2 (длина + ширина) Следовательно, P = 2(x+y)…
  3. Площадь прямоугольника = Длина × Ширина. Следовательно,

Как найти стороны прямоугольника, если известен периметр?

Дополнительно Как найти длину и ширину прямоугольника, если у вас есть только площадь?

Как найти стороны и периметр прямоугольника?

Как найти длину и ширину прямоугольника, зная периметр и площадь?

Как найти длину и ширину прямоугольника, если известны периметр и площадь? Чтобы найти длину или ширину, когда задана площадь прямоугольника

  1. Когда нам нужно найти длину прямоугольника, нам нужно разделить площадь на ширину.
  2. Длина прямоугольника = Площадь ÷ ширина.
  3. ℓ = А ÷ б.
  4. Точно так же, когда нам нужно найти ширину прямоугольника, нам нужно разделить площадь на длину.
  5. Ширина прямоугольника = Площадь ÷ длина.

Как найти периметр прямоугольника без длины? Вместо того, чтобы складывать две стороны прямоугольника и умножать на два, вы можете просто добавить все четыре стороны вместе напрямую чтобы найти периметр вашего прямоугольника.

Как найти периметр, зная длины сторон?

Также Как найти периметр и площадь прямоугольника? Периметр прямоугольника

  1. Запомните формулу для периметра и площади прямоугольника. Площадь прямоугольника равна a = длина * ширина, а периметр равен p = (2 * длина) + (2 * ширина).
  2. Подставьте известные значения в формулу площади. 36 = 4 * ш. …
  3. Подставьте значения длины и ширины в формулу периметра.

Как вам периметр с площадью?

Отношение между площадью и периметром квадрата таково, что периметр равен 4-кратному квадратному корню из площади. Чтобы получить периметр из площади для квадрата, умножьте квадратный корень из площади на 4 . Периметр всегда измеряется в линейных единицах, которые выводятся из квадратных единиц площади.

Как найти периметр стороны?

Как получить длину и ширину, зная площадь и периметр?

Формула для периметра «P» прямоугольника, длина и ширина которого равны «l» и «w» соответственно, равна P = 2 (l + w). Чтобы сначала вычислить длину и ширину прямоугольника, вычислите значение ширины ‘w’, используя формулу площади прямоугольника, а именно: ‘w = A / l’.

Как найти периметр, учитывая площадь?

Чтобы получить периметр из площади для квадрата, умножьте квадратный корень из площади на 4 . Периметр всегда измеряется в линейных единицах, которые выводятся из квадратных единиц площади.

Как найти периметр с помощью L и B?

Что такое периметр и площадь прямоугольника? Периметр прямоугольника Р находится по формуле P = 2l + 2w , где l — длина, а w — ширина прямоугольника. … Площадь A прямоугольника определяется формулой A=lw , где l — длина, а w — ширина.

Как найти площадь и периметр прямоугольника в алгебре?

Чему равен периметр 24? Если периметр квадрата = 24, это означает, что каждая сторона = 6, потому что 4 х 6 = 24.

Каковы стороны прямоугольника?

Прямоугольник — это двухмерная геометрическая фигура, имеющая 4 стороны и 4 угла. Две его стороны встречаются под прямым углом. Таким образом, прямоугольник имеет 4 угла по 90 ̊ каждый. Противоположные стороны прямоугольника имеют одинаковую длину и параллельны.

Сколько сторон у прямоугольника?

Прямоугольные
Прямоугольные
Тип четырехугольник, трапеция, параллелограмм, ортотоп
Ребра и вершины 4
Символ Шляфли {} × {}

Какая длина прямоугольника?

Прямоугольник состоит из двух сторон: длины (L) и ширины (W). Длина прямоугольника самая длинная сторона, а ширина — самая короткая сторона. Ширину прямоугольника иногда называют шириной (b).

Как найти периметр двух прямоугольников? Умножьте сумму длины и ширины на два.

После того, как вы сложили длину и ширину прямоугольника, вы можете найти его периметр, умножение на два.

Как найти ширину прямоугольника?

Чтобы найти ширину, умножьте полученную длину на 2 и вычтите результат из периметра.. Теперь у вас есть общая длина оставшихся 2 сторон. Это число, разделенное на 2, и есть ширина.

Похожие страницы:

Длина окружности, формула как найти длину окружности

Как найти длину окружности через диаметр

Хорда — это отрезок, который соединяет две точки окружности.

Диаметр — хорда, которая проходит через центр окружности. Формула длины окружности через диаметр:

l=πd, где

π— число пи — математическая константа, примерно равная 3,14

d — диаметр окружности

Как обозначается длина окружности?

Длина окружности обозначается буквой .

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

l=2πr , где

π — число пи, примерно равное 3,14

r — радиус окружности

Это две основные формулы для вычисления длины окружности. Ниже мы покажем еще несколько формул, которые вы сможете доказать самостоятельно, пользуясь основными формулами и свойствами геометрических фигур.

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

, где

π — число пи, примерно равное 3,14

S — площадь круга

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

l=πd, где

π — число пи, примерно равное 3,14 

d — диагональ прямоугольника

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

l=πa, где

π — математическая константа, примерно равная 3,14

a — сторона квадрата

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

, где

π — математическая константа, она примерно равна 3,14

a — первая сторона треугольника

b — вторая сторона треугольника

c — третья сторона треугольника

S — площадь треугольника

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.

Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

, где

π — математическая константа, примерно равная 3,14

S — площадь треугольника

p — полупериметр треугольника

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.

Формула вычисления длины окружности:

, где

π — математическая константа, примерно равная 3,14

a — сторона многоугольника

N — количество сторон многоугольника

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

Подставляем туда известные переменные и получается, что длина окружности равна

(см)

Ответ: 15,7 (см)

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною дм

Решение. Радиус окружности равен . Подставим туда наши переменные и получим (дм).

Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус , мы можем подставить наши данные и получить решение задачи.

Так и сделаем:

(дм)

Ответ: (дм)

Как узнать длину стены если известна площадь — Строй Обзор

На чтение 8 мин Просмотров 846 Опубликовано

Даже если в техническом паспорте и документации на жилье указаны все необходимые величины и приложен план, не всегда все это оказывается под рукой.

Тогда приходится вооружиться рулеткой и, после проведения необходимых измерений, посчитать нужное самостоятельно. В данной статье мы научимся считать площадь стен дома.

В каких случаях это необходимо?

Комфортность проживания в комнате принято оценивать ее габаритами. Тогда зачем же нужна площадь стен? Это вспомогательная величина,

важная для оценки количества требуемых расходных материалов при ремонте.

Зная площадь стен в комнате или квартире, вы сможете купить необходимое количество расходных материалов, будь это обои, краска, побелка или плитка.

У рулона с обоями известны его ширина и длина, что позволяет рассчитать необходимое кол-во материала по площади стен, на банках с краской также указывается рекомендуемый расход в граммах на квадратный метр, плитка при определенных размерах также обладает известной площадью.

Расчет площади стен

Для подсчета необходимо воспользоваться известной из школы формулой площади прямоугольника

.

Даже если комната самой «неправильной» формы, стены можно «развернуть» (разумеется, мысленно), и мы получим прямоугольник с длиной, равной периметру комнаты, и высотой, равной высоте комнаты.

А площадь прямоугольника равна произведению его сторон. Одна из сторон – периметр комнаты, другая – ее высота. Периметр комнаты – это сумма длин всех сторон плоской фигуры, представляющей пол, или, проще говоря, длина всех плинтусов.

Прямоугольная комната

Если комната простой формы, длину периметра можно измерить, сделав несколько необходимых измерений. Высота же измеряется обычно по любому углу комнаты, от пола до потолка. Линейные размеры следует измерять в метрах, тогда площадь выразится в квадратных метрах.

Пример: Периметр комнаты 13,90 м, высота 2,65 м. Площадь стен = 13,90 х 2,65 = 36,84 кв. м.

Для расчета периметра прямоугольной комнаты достаточно измерить длину и ширину комнаты, сложить их и умножить на 2.

Пример: длина 4,1 м, ширина 2,85 м. Периметр = 2 х (4,1 + 2,85) = 13,90 (м).

Неправильная форма

Периметр комнаты неправильной формы можно измерить, тщательно протянув вдоль периметра по плинтусам бечевку или провод, при этом следует обогнуть бечевкой все выступы, изгибы, а затем измерить рулеткой длину участка бечевки, соответствующую периметру.

Форма стен может усложняться наличием ниш и выступающих частей. Иногда этими элементами можно пренебречь, при необходимости же их учета необходимо по формуле площади прямоугольника — учесть всю эту дополнительную площадь.

Смотрите в следующем видео — как рассчитать площадь стен:

В виде трапеции

У комнаты в виде трапеции из 4 стен две противолежащие параллельны друг другу, а две другие нет. В этом случае можно отдельно измерить длины всех 4 сторон и сложить. Это и будет периметр комнаты.

Существует сложная формула, позволяющая

вычислить по измеренной длине 3 сторон четвертую, но проще измерить, чем вычислить.

Пример: Стороны комнаты с полом в виде трапеции 3, 4, 6 и 5 м. Периметр = 3 + 4 + 6 + 5 = 18 (м).

Читайте также статью про размер окна стандарт для домов разных типов.

Округлой формы

Если комната строго круглой формы, периметр можно вычислить, измерив ее поперечник (диаметр) и умножив его на число «пи», равное (с округлением) 3,14.

Пример: поперечник 2,7 м, периметр = 3,14 x 2,7 = 8,48 (м).

Участки округлой формы придется посчитать отдельно, измерив бечевкой или гибкой рулеткой длину округлой части и прибавив ее к измеренным прямолинейным участкам периметра.

Окна и двери при расчете материала

Если вы оклеиваете стены комнаты обоями или красите краской, из вычисленной как описано выше площади стен необходимо вычесть площадь окон и дверей.

Окна и двери, как правило, прямоугольной формы, и для определения их площади достаточно измерить их ширину и высоту, и перемножить.

Пример: в комнате с площадью стен 36,84 кв. м. есть окно размером 1,30 на 1,40 м и дверь размером 0,80 на 2,05 м. Площадь окна равна 1,30 х 1,40 = 1,82 кв. м, площадь двери составляет 0,80 х 2,05 = 1,64 кв. м. Площадь стен без окон и дверей составляет 36,84 – 1,82 – 1,64 = 33,38 кв. м.

Или вот другой наглядный пример:

Как посчитать расход краски для стен?

На банке с краской указан расход 100 г/кв.м. Подсчитаем количество краски, необходимое, чтобы выкрасить стены комнаты с площадью стен 33,38 кв. м.

Умножаем расход, выраженный в килограммах на 1 квадратный метр, на площадь стен без окон и дверей, получаем 0,1 х 33,38 = 3,34 (кг). Очевидно, можно обойтись банкой с 3,5 кг краски. Подобно этому примеру можно посчитать и другие отделочные материалы.

Чтобы не лазить по квартире с обычной рулеткой, которой в одиночку измерить размер трудно и все равно есть погрешности, лучше всего использовать лазерную. С ней можно все измерить быстро и одному.

2. Складываем 2,5 и 2,75 = 5,25. Соответственно, у нас есть сумма длин двух стен.

3. Вычисляем сколько в процентном соотношении от 5,25 занимает каждая стена. Составляем пропорцию.
5,25 — 100%
2,5 — х%
х = (2,5*100)/5,25 = 47,62% (округлила)
Соответственно вторая стена, которая 2,75 см на плане — 100% — 47,62% = 52,38%

3. Теперь берём известную нам по плану реальную площадь комнаты, в моём случае 2,51 метра квадратных. Находим корень из этого числа, для этого можно обратиться к Святому Гуглу, вбиваем в поисковик «корень квадратный из 2,51» и вуаля — 1,5842.

Что значит это число? Это значит, что если бы наша комната была идеально квадратной, то каждая стена была бы длиной 1,5842 м. Проверяем: 1,5842*1,5842 = 2,509.

4. Теперь мы можем найти реальную длину наших стен. Складываем длины двух стен 1,5842+1,5842 = 3,1684. — Сумма длин двух стен.
Благодаря процентному соотношению стен, которое мы нашли в первом пункте, мы можем узнать длину каждой из них.
Открываем калькулятор: 3,1684*47,62% = 1,5087м.
Вторую стену найти легко: 3,1684-1,50 = 1,6597м.
Итого у нас комната размером 1,5*1,66 метра.

Эксперты Woman.ru

Узнай мнение эксперта по твоей теме

Кузьмин Иван Иванович

Врач-психотерапевт, Супервизор. Специалист с сайта b17.ru

Антакова Любовь Николаевна

Психолог, Консультант. Специалист с сайта b17.ru

Ольга Матвиенко

Психолог, Арт-терапевт. Специалист с сайта b17.ru

Баранова Юлия Германовна

Психолог, Консультант. Специалист с сайта b17.ru

Тропина Наталья Владимировна

Врач-психотерапевт. Специалист с сайта b17.ru

Светлана Казакова

Психолог. Специалист с сайта b17.ru

Виктория Киселёва

Психолог, Гештальт-терапевт. Специалист с сайта b17.ru

Сокуренко Анна

Психолог, Консультант. Специалист с сайта b17.ru

Спиридонова Надежда Викторовна

Психолог. Специалист с сайта b17.ru

Зубкова Анна Андреевна

Психолог, Гештальт-терапевт. Специалист с сайта b17.ru

Методом подбора. Например 20 кв.м -это 5 и 4, или 2 и 10.

нужен ещё размер диагонали, тогда можно расчитать

Нужны пропорции помещения: как длина соотносится с шириной. Или знать сколько по диагонали, как уже написали.

если только площадь известна, то никак.

ответом на эту задачу будет являться множество точек, лежащих в области 0+ до Х/0+ по горизонтали и вертикали, где Х — это площадь комнаты.
0+ — имеется ввиду минимальное положительное значение (с какой точностью вы хотите расчитать размеры комнаты? с точностью до метра? сантиметра? миллиметра?)

Похожие темы

ответом на эту задачу будет являться множество точек, лежащих в области 0+ до Х/0+ по горизонтали и вертикали, где Х — это площадь комнаты.
0+ — имеется ввиду минимальное положительное значение (с какой точностью вы хотите расчитать размеры комнаты? с точностью до метра? сантиметра? миллиметра?)

помогите решить задачу
краткая запись:
S-32га
длина-640
ширина-?

Как найти длину и ширину помещения,если известна её площадь?
По маштабу квадратного метра, это будет сложней чем опредиль площадь. И не слушайте, этих баранов, которые не разбераются в сроительстве.

Добавлено.
Маштаб квадратного метра — это в сколько раз было уменьшено помещение.
Пример, 1:100 — это значит, 1 метр равен 1 сантиметру.

помогите решить задачу
краткая запись:
S-32га
длина-640
ширина-?

помогите решить задачу площадь комнаты 12,36!как найти длину и ширину

знаю площадь 560000 метров в квадрате как найти длину и ширину? без разницы или квадрат или прямоугольник

Тут чат можно замутить нормальный. ыыыххааа))

помогите решить задачу площадь комнаты 12,36!как найти длину и ширину

«помогите решить задачу
краткая запись:
S-32га
длина-640
ширина-?»

Один гектар — 10000 квадратным метров. Вы посчитали верно: 32 * 10000 / 640 = 500

например площадь 12 см дели его на 2 получится 6 и 2 6 длина 2 ширина

Я думаю так
1)18 : 2=9(м) a
2)18 : 9=2(м)b
Ответ:9 и 2 м

Жалоба

Модератор, обращаю ваше внимание, что текст содержит:

Жалоба отправлена модератору

Страница закроется автоматически
через 5 секунд

Форум: психология

Новое за сегодня

Популярное за сегодня

Пользователь сайта Woman.ru понимает и принимает, что он несет полную ответственность за все материалы частично или полностью опубликованные им с помощью сервиса Woman.ru.
Пользователь сайта Woman.ru гарантирует, что размещение представленных им материалов не нарушает права третьих лиц (включая, но не ограничиваясь авторскими правами), не наносит ущерба их чести и достоинству.
Пользователь сайта Woman.ru, отправляя материалы, тем самым заинтересован в их публикации на сайте и выражает свое согласие на их дальнейшее использование редакцией сайта Woman.ru.

Использование и перепечатка печатных материалов сайта woman.ru возможно только с активной ссылкой на ресурс.
Использование фотоматериалов разрешено только с письменного согласия администрации сайта.

Размещение объектов интеллектуальной собственности (фото, видео, литературные произведения, товарные знаки и т.д.)
на сайте woman.ru разрешено только лицам, имеющим все необходимые права для такого размещения.

Copyright (с) 2016-2019 ООО «Хёрст Шкулёв Паблишинг»

Сетевое издание «WOMAN.RU» (Женщина.РУ)

Свидетельство о регистрации СМИ ЭЛ №ФС77-65950, выдано Федеральной службой по надзору в сфере связи,
информационных технологий и массовых коммуникаций (Роскомнадзор) 10 июня 2016 года. 16+

Учредитель: Общество с ограниченной ответственностью «Хёрст Шкулёв Паблишинг»

Площади фигур — Сайт учителя математики

Площади многоугольников
Друзья мои, легко найти
S параллелограмма:
Вы помножьте а на b
И на синус гамма.
(S=absin)
S трапеции ты знаешь.
Посчитай, я подожду.
Полусумму оснований
Ты умножь на высоту.
(S = (а+b/2)h)
Площадь треугольника
Знать, конечно, надо:
Мы умножим а на аш
И разделим на два.
С понятием площади нам приходиться сталкиваться ежедневно. Для того, чтобы постелить новую плитку в вашей квартире вам нужно приобрести определенное ее количество, которое будет зависеть от площади вашей комнаты. Размер земельного участка вашего дома также будет характеризоваться площадью. Обычно люди забывают как найти площадь более сложных фигур, таких как треугольник, трапеция, или круг, но если вы настолько закрутились в жизни, что забыли как найти площадь прямоугольника, то мы вам это напомним в данной статье.

Вычисление площади прямоугольника.
Площадь измеряют в квадратных единицах, миллиметрах, сантиметрах, метрах и так далее. Сколько квадратов в данном прямоугольнике?


Совершенно верно. В нем пятнадцать квадратных единиц. Значит для того, чтобы найти площадь прямоугольника нужно его ширину умножить на длину. В виде формулы это можно представить как S = h*b, где S-площадь, h-высота, b-ширина. Или так:
площадь прямоугольника = ширина х длину.
Вот еще несколько примеров определения площади прямоугольника.

Площадь = Длина х Ширина
Площадь = 9 х 5 = 45 квадратных единиц
Площадь = Длина х Ширина
Площадь = 8 х 6 = 48 квадратных единиц


Единицы измерения площади.
Как было сказано выше площадь измеряется в квадратных единицах. Они будут различными в зависимости от размера измеряемой площади. Конечно, можно измерять все в одних единицах, но в результате мы будем получать либо слишком маленькие, либо слишком большие для восприятия цифры.

 

ПримерЕдиница измеренияЕдиница площади 
Ноготь на пальцеМиллиметр мм2
Лист бумаги Сантиметр см2
Комната Метр м2
Город Километр км2


Площадь земельных участков еще часто указывают в сотках. Одна сотка — это площадь участка размером 10х10 метров, которая составляет 100 квадратных метров и поэтому называется соткой. Вот несколько характерных примеров размеров, которые может иметь земельный участок площадью 15 соток.

 

Ширина 15, длина 100Площадь 1500 м2Площадь 15 соток
Ширина 20, длина 75Площадь 1500 м2Площадь 15 соток
Ширина 25, длина 60Площадь 1500 м2Площадь 15 соток
ширина 30, длина 50Площадь 1500 м2Площадь 15 соток

 

В будущем, если вы вдруг забудете как найти площадь прямоугольника, то вспоминайте очень старый анекдот, когда дедушка спрашивает у пятиклассника как найти площадь Ленина, а тот отвечает что нужно ширину Ленина умножить на длину Ленина.




Иногда в быту людям приходится вспоминать давно забытые школьные знания. Например, когда при очередном ремонте в доме или квартире нужно определить количество материала для какой-то поверхности треугольной формы. Когда-то вы знали это на зубок, но теперь судорожно пытаетесь вспомнить как найти площадь треугольника?

Не переживайте! Это нормально, когда человеческий мозг перекладывает уже давно не используемую информацию в удаленные уголки, из которых ее не вседа получается быстро извлечь. А чтобы вы не мучились этим вопросом, мы напомним как найти площадь треугольника различными методами в данной статье.

Как известно, треугольником называется плоская фигура, образованная пересекающимися прямыми. Точки пересечения называют вершинами, а противоположные им отрезки прямых ребрами. Встречаются частные виды треугольников, такие как прямоугольный, равнобедренный и равносторонний треугольники.

С самом общем случае площадь треугольника находится как половина произведения длина основания треугольника на величину высоты, опущенной на данное основание с противоположной вершины. Записывается это следующим образом S = 1/2*b*h, где S-площадь треугольника, b-длина одной из сторон треугольника, h-высота, опущенная к этой стороне.

Данную формулу можно хорошо понять, запомнить и вспоминать по частному случаю нахождения площади прямоугольного треугольника. Посмотрите внимательно на рисунок.


Как видите площадь такого треугольника легко определяется как половина площади воображаемого прямоугольника образованного из двух таких треугольников. Для непрямоугольного треугольника вы как бы добавляете два треугольника до образования прямоугольника и находите его площадь.
Если известна длина трех сторон треугольника, то его площадь может быть найдена по формуле Герона. Для упрощения ее использования вводят новую величину, называемую полупериметром, который находиться как половина суммы всех сторон треугольника и записывается в виде P = (a+b+c)/2, где P-полупериметр, а,b,с-стороны (ребра) треугольника. После нахождения полупериметра формула Герона принимает следующий вид: S = √(p(p-a)(p-b)(p-c)), где S — площадь треугольника, √-квадратный корень, p-полупериметр, a,b,c-стороны (ребра) треугольника.

Существуют также другие формулы того, как найти площадь треугольника, но мы не станем их здесь приводить, так как в них используются такие данные как синусы углов и которые больше подходят для задач по математической практике, чем по бытовому использованию.


Как найти площадь трапеции? Данная задача в быту возникает очень редко, но иногда оказывается необходимой, к примеру, чтобы найти площадь комнаты в форме трапеции, которые все чаще применяют при строительстве современных квартир, или в дизайн-проектах по ремонту.

Трапеция — это геометрическая фигура, образованная четырьмя пересекающимися отрезками, два из которых параллельны между собой и называются основаниями трапеции. Два других отрезка называются сторонами трапеции. Кроме того, в дальнейшем нам пригодится еще одно определение. Это средняя линия трапеции, которая представляет собой отрезок, соединяющий середины боковых сторон и высота трапеции, которая равна расстоянию между основаниями.

Как и у треугольников, у трапеция есть частные виды в виде равнобедренной (равнобокой) трапеции, у которой длина боковых сторон одинаковы и прямоугольной трапеции, у которой одна из сторон образует с основаниями прямой угол.

Трапеции обладают некоторыми интересными свойствами:

  1. Средняя линия трапеции равна полусумме оснований и параллельна им.
  2. У равнобедренных трапеций боковые стороны и углы которые они образуют с основаниями равны.
  3. Середины диагоналей трапеции и точка пересечения ее диагоналей находятся на одной прямой.
  4. Если сумма боковых сторон трапеции равна сумме оснований, то в нее можно вписать круг
  5. Если сумма углов, образованных сторонами трапеции у любого ее основания равна 90, то длина отрезка, соединяющего середины оснований, равна их полуразности.
  6. Равнобедренную трапецию можно описать окружностью. И наоборот. Если в трапеция вписывается в окружность, значит она равнобедренная.
  7. Отрезок, проходящий через середины оснований равнобедренной трапеции будет перпендикулярен ее основаниям и представляет собой ось симетрии.

Как найти площадь трапеции.
Площадь трапеции будет равна полусумме ее оснований, умноженной на высоту. В виде формулы это записывается как S = ((a+b)*h)/2, где S-площадь трапеции, a,b-длина каждого из оснований трапеции, h-высота трапеции.

Понять и запомнить эту формулу можно следующим образом. Как следует из рисунка ниже трапецию с использованием средней линии можно преобразовать в прямоугольник, длина которого и будет равна полусумме оснований.

Можно также любую трапецию разложить на более простые фигуры: прямоугольник и один, или два треугольника и если вам так проще, то найти площадь трапеции, как сумму площадей составляющих ее фигур.

Есть еще одна простая формула для подсчета ее площади. Согласно ней площадь трапеции равна произведению ее средней линии на высоту трапеции и записывается в виде: S = m*h, где S-площадь, m-длина средней линии, h-высота трапеции. Данная формула больше подходит для задач по математике, чем для бытовых задач, так как в реальных условиях вам не будет известна длина средней линии без предварительных расчетов. А известны вам будут только длины оснований и боковых сторон.

В этом случае площадь трапеции может быть найдена по формуле: S = ((a+b)/2)*√c2-((b-a)2+c2-d2/2(b-a))2, где S-площадь, a,b-основания, c,d-боковые стороны трапеции.

Существуют еще несколько способов того, как найти площади трапеции. Но, они примерно также неудобны как и последняя формула, а значит не имеет смысла на них останавливаться. Поэтому, рекомендуем вам пользоваться первой формулой из статьи и желаем всегда получать точные результаты.



 
 Мы знаем, что окружность представляет собой множество точек равноудаленных от заданной точки и лежащих с данной точкой, а также между собой в одной плоскости. Точка, от которой равноудалены другие точки называется центром окружности.

Расстояние от любой точки окружности до его центра называется радиусом окружности и обычно обозначается заглавной английской буквой R.
Расстояние между двумя противолежащими точками, у которых соединяющий их отрезок проходит через центр окружности, называется диаметром окружности и по общепринятым стандартам обозначается английской заглавной буквой D.

Кругом называется часть плосткости, ограниченная окружностью.

Исходя из определения окружности можно понять, что диаметр равен двум радиусм окружности D=2R, а радиус наоборот равен половине диаметра R=D/2.

После того, как были определены все свойства и ключевые характеристики кругов и окружностей можно приступить к определению площади круга, для чего может быть использована следующая формула:

S = πR2

где, S — площадь круга, π — число пи (о нем мы расскажем ниже), R — радиус окружности.

π=3,14.

 

Формулу площади круга можно преобразовать с учетом того, что радиус равен полудиаметру круга. В этом случае она примет вид:

 

D = πD2/4

где, S — площадь круга, π — число пи, D — диаметр окружности.

Как вычисляется периметр прямоугольника. Периметр и площадь прямоугольника

Одним из базовых понятий математики является периметр прямоугольника. На эту тему существует множество задач, при решении которых не обойтись без формулы периметра и навыков его вычисления.

Основные понятия

Прямоугольник – это четырехугольник, у которого все углы прямые, а противоположные стороны попарно равны и параллельны. В нашей жизни многие фигуры имеют форму прямоугольника, например, поверхность стола, тетрадь и прочее.

Рассмотрим пример: по границам земельного участка необходимо поставить забор. Для того чтобы узнать длину каждой из сторон необходимо их измерить.

Рис. 1. Земельный участок формой прямоугольника.

Земельный участок имеет стороны длиной 2 м., 4 м., 2 м., 4 м. потому чтобы общую узнать длину забора необходимо сложить длины всех сторон:

2+2+4+4= 2·2+4·2 =(2+4)·2 =12 м.

Именно эта величина в общем случае и называется периметром. Таким образом, для нахождения периметра необходимо сложить все стороны фигуры. Для обозначения периметра используют букву P.

Для вычисления периметра прямоугольной фигуры не нужно разделять её на прямоугольники, нужно измерить линейкой (рулеткой) лишь все стороны данной фигуры и найти их сумму.

Периметр прямоугольника измеряется в мм., см., м., км и так далее. При необходимости, данные в задании, переводят в одинаковую систему измерения.

Периметр прямоугольника измеряется в различных единицах: мм., см., м., км и так далее. При необходимости, данные в задании, переводят в одну систему измерения.

Формула периметра фигуры

Если принять к вниманию тот факт, что противоположные стороны прямоугольника равны, то можно вывести формула периметра прямоугольника:

$P = (a+b) * 2$, где а, b – стороны фигуры.

Рис. 2. Прямоугольник, с обозначенными противоположными сторонами.

Существует и другой способ найти периметр. Если в задание дано лишь одну сторону и площадь фигуры, можно использовать выразить другую сторону через площадь. Тогда формула будет выглядеть следующим образом:

$P = {{2S + 2a2}\over{a}}$, где S – площадь прямоугольника.

Рис. 3. Прямоугольник с сторонами a, b .

Задание : Вычислить периметр прямоугольника, если его стороны равны 4 см. и 6 см.

Решение:

Используем формулу $P = (a+b)*2$

$P = (4+6)*2=20 см$

Таким образом, периметр фигуры $P = 20 см$.

Так как периметр – это сумма все сторон фигуры, то полупериметр это сумма только одной длины и ширины. Чтобы получить периметр необходимо полупериметр умножить на 2.

Площадь и периметр – это два основных понятия измерения любой фигуры. Их нельзя путать, хоть они и связаны между собой. Если увеличить, либо уменьшить площадь, то, соответственно, увеличится либо уменьшится его периметр.

Что мы узнали?

Мы узнали, как найти периметр прямоугольника. А также ознакомились с формулой его вычисления. С этой темой можно столкнуться не только при решении математических задач, но и в реальной жизни.

Тест по теме

Оценка статьи

Средняя оценка: 4.5 . Всего получено оценок: 363.

Периметр — это сумма длин всех сторон многоугольника.

  • Для вычисления периметра геометрических фигур используются специальные формулы, где периметр обозначается буквой «P». Название фигуры рекомендуется писать маленькими буквами под знаком «P», чтобы знать чей периметр ты находишь.
  • Периметр измеряется в единицах длины: мм, см, м, км и т.д.

Отличительные особенности прямоугольника
  • Прямоугольник – это четырехугольник.
  • Все параллельные стороны равны
  • Все углы = 90º.
  • Например в повседневной жизни прямоугольник может встречаться в виде — книги, монитора, крышки от стола или двери.

Как вычислить периметр прямоугольника

Существует 2 способа его нахождения:

  • 1 способ. Складываем все стороны. P = a + а + b + b
  • 2 способ. Сложить ширину и длину, и умножить на 2. P = (a + b) · 2. ИЛИ Р = 2 · а + 2 · b. Стороны прямоугольника, которые лежат друг против друга (противолежащие), называются длиной и шириной.

«a» — длина прямоугольника, более длинная пара его сторон.

«b» — ширина прямоугольника, более короткая пара его сторон.

Пример задачи на подсчет периметра прямоугольника:

Вычислите периметр прямоугольника, есть его ширина равна 3 см., а длина — 6.

Запомни формулы вычисления периметра прямоугольника!

Полупериметр — это сумма одной длины и одной ширины.

  • Полупериметр прямоугольника — когда выполняешь первое действие в скобках – (a+b) .
  • Чтобы из полупериметра получить периметр, нужно его увеличить в 2 раза, т.е. умножить на 2.

Как найти площадь прямоугольника

Формула площади прямоугольника S= a*b

Если в условии известна длина одной стороны и длина диагонали, то площадь найти можно, используя в таких задачах, теорему Пифагора, она позволяет найти длину стороны прямоугольного треугольника если известны длины двух других сторон.

  • : a 2 + b 2 = c 2 , где a и b – стороны треугольника, а с – гипотенуза, самая длинная сторона.


Помни!

  1. Все квадраты – прямоугольники, но не все прямоугольники – квадраты. Так как:
    • Прямоугольник — это четырехугольник со всеми прямыми углами.
    • Квадрат — прямоугольник, у которого все стороны равны.
  2. Если ты находишь площадь, ответ всегда будет в квадратных единицах (мм 2 , см 2 , м 2 , км 2 и т.д.)

При решении, необходимо принять во внимание, что решить задачу о нахождении площади прямоугольника только из длины его сторон нельзя .

В этом несложно убедиться. Пусть периметр прямоугольника будет равен 20 см. Это будет верно, если его стороны 1 и 9, 2 и 8, 3 и 7 см. Все эти три прямоугольника будут иметь одинаковый периметр, равный двадцати сантиметрам. (1 + 9) * 2 = 20 точно также как и (2 + 8) * 2 = 20 см.
Как видно, мы можем подобрать бесконечное количество вариантов размеров сторон прямоугольника, периметр которого будет равен заданному значению.

Площадь прямоугольников с заданным периметром 20 см, но с различными сторонами будет различна. Для приведенного примера — 9, 16 и 21 квадратных сантиметров соответственно.
S 1 = 1 * 9 = 9 см 2
S 2 = 2 * 8 = 16 см 2
S 3 = 3 * 7 = 21 см 2
Как видим, вариантов площади фигуры при заданном периметре — бесконечное количество.

Замечание для любознательных . В случае с прямоугольником, у которого задан периметр, максимальную площадь будет иметь квадрат.

Таким образом, для того, чтобы вычислить площадь прямоугольника из его периметра, нужно обязательно знать либо соотношение его сторон, либо длину одной из них. Единственной фигурой, которая имеет однозначную зависимость своей площади от периметра, является круг. Только для круга и возможно решение.


В этом уроке:
  • Задача 4. Изменение длины сторон при сохранении площади прямоугольника

Задача 1. Найти стороны прямоугольника из площади

Периметр прямоугольника равен 32 сантиметрам, а сумма площадей квадратов, построенных на каждой из его сторон — 260 квадратных сантиметров. Найдите стороны прямоугольника.
Решение.

2(x+y)=32
Согласно условию задачи, сумма площадей квадратов построенных на каждой из его сторон (квадратов, соответственно, четыре) будет равна
2x 2 +2y 2 =260
x+y=16
x=16-y
2(16-y) 2 +2y 2 =260
2(256-32y+y 2)+2y 2 =260
512-64y+4y 2 -260=0
4y 2 -64y+252=0
D=4096-16×252=64
x 1 =9
x 2 =7
Теперь примем во внимание, что исходя из того, что x+y=16 (см. выше) при x=9, то y=7 и наоборот, если x=7, то y=9
Ответ : Стороны прямоугольника равны 7 и 9 сантиметров

Задача 2. Найти стороны прямоугольника из периметра

Периметр прямоугольника 26 см, а сумма площадей квадратов, построенных на двух его смежных сторонах, равна 89 кв. см. Найдите стороны прямоугольника.
Решение.
Обозначим стороны прямоугольника как x и y.
Тогда периметр прямоугольника равен:
2(x+y)=26
Сумма площадей квадратов построенных на каждой из его сторон (квадратов, соответственно, два и это квадраты ширины и высоты, поскольку стороны смежные) будет равна
x 2 +y 2 =89
Решаем полученную систему уравнений. Из первого уравнения выводим, что
x+y=13
y=13-y
Теперь выполняем подстановку во второе уравнение, заменяя x его эквивалентом.
(13-y) 2 +y 2 =89
169-26y+y 2 +y 2 -89=0
2y 2 -26y+80=0
Решаем полученное квадратное уравнение.
D=676-640=36
x 1 =5
x 2 =8
Теперь примем во внимание, что исходя из того, что x+y=13 (см. выше) при x=5, то y=8 и наоборот, если x=8, то y=5
Ответ: 5 и 8 см

Задача 3. Найти площадь прямоугольника из пропорции его сторон

Найти площадь прямоугольника если его периметр равен 26 см а стороны пропорциональны как 2 к 3.

Решение.
Обозначим стороны прямоугольника через коэффициент пропорциональности x.
Откуда длина одной стороны будет равна 2x, другой — 3х.

Тогда:
2(2x+3x)=26
2x+3x=13
5x=13
x=13/5
Теперь, исходя из полученных данных, определим площадь прямоугольника:
2x*3x=2*13/5*3*13/5=40,56 см 2

Задача 4 . Изменение длины сторон при сохранении площади прямоугольника Длина прямоугольника увеличена на 25%. На сколько процентов надо уменьшить ширину, чтобы его площадь не изменилась?

Решение .
Площадь прямоугольника равна
S = ab

В нашем случае один из множителей увеличился на 25%, что означает a 2 = 1,25a . Таким образом, новая площадь прямоугольника должна быть равна
S 2 = 1,25ab

Таким образом, для того, чтобы вернуть площадь прямоугольника к начальному значению, то
S 2 = S / 1.25
S 2 = 1,25ab / 1.25

Поскольку новый размер а изменять нельзя, то
S 2 = (1,25a) b / 1.25

1 / 1,25 = 0,8
Таким образом, величину второй стороны нужно уменьшить на (1 — 0,8) * 100% = 20%

Ответ : ширину нужно уменьшить на 20%.

На этом занятии мы познакомимся с новым понятием — периметр прямоугольника. Мы сформулируем определение этого понятия, выведем формулу для его вычисления. Также повторим сочетательный закон сложения и распределительный закон умножения.

На данном уроке мы познакомимся с периметром прямоугольника и его вычислением.

Рассмотрим следующую геометрическую фигуру (рис. 1):

Рис. 1. Прямоугольник

Данная фигура — прямоугольник. Вспомним, какие отличительные особенности прямоугольника мы знаем.

Прямоугольник — это четырехугольник, у которого четыре прямых угла и стороны попарно равны.

Что в нашей жизни может иметь прямоугольную форму? Например, книга, крышка стола или земельный участок.

Рассмотрим следующую задачу:

Задача 1 (рис. 2)

Вокруг земельного участка строителям понадобилось поставить забор. Ширина этого участка — 5 метров, длина — 10 метров. Забор какой длины получится у строителей?

Рис. 2. Иллюстрация к задаче 1

Забор ставят по границам участка, поэтому, чтобы узнать длину забора, нужно знать длину каждой из сторон. У данного прямоугольника стороны равны: 5 метров, 10 метров, 5 метров, 10 метров. Составим выражение для подсчета длины забора: 5+10+5+10. Воспользуемся переместительным законом сложения: 5+10+5+10=5+5+10+10. В данном выражении есть суммы одинаковых слагаемых (5+5 и 10+10). Заменим суммы одинаковых слагаемых произведениями: 5+5+10+10=5·2+10·2. Теперь воспользуемся распределительным законом умножения относительно сложения: 5·2+10·2=(5+10)·2.

Найдем значение выражения (5+10)·2. Сначала выполняем действие в скобках: 5+10=15. А затем повторяем число 15 два раза: 15·2=30.

Ответ: 30 метров.

Периметр прямоугольника — сумма длин всех его сторон. Формула для подсчета периметра прямоугольника : , здесь a — длина прямоугольника, а b — ширина прямоугольника. Сумма длины и ширины называется полупериметром . Чтобы из полупериметра получить периметр, нужно его увеличить в 2 раза, то есть умножить на 2.

Воспользуемся формулой периметра прямоугольника и найдем периметр прямоугольника со сторонами 7 см и 3 см: (7+3)·2=20 (см).

Периметр любой фигуры измеряется в линейных единицах.

На данном уроке мы познакомились с периметром прямоугольника и формулой его вычисления.

Произведение числа и суммы чисел равно сумме произведений данного числа и каждого из слагаемых.

Если периметр — это сумма длин всех сторон фигуры, то полупериметр — сумма одной длины и одной ширины. Мы находим полупериметр, когда работаем по формуле нахождения периметра прямоугольника (когда мы выполняем первое действие в скобках — (a+b)).

Список литературы

  1. Александрова Э.И. Математика. 2 класс. — М.: Дрофа, 2004.
  2. Башмаков М.И., Нефёдова М.Г. Математика. 2 класс. — М.: Астрель, 2006.
  3. Дорофеев Г.В., Миракова Т.И. Математика. 2 класс. — М.: Просвещение, 2012.
  1. Festival.1september.ru ().
  2. Nsportal.ru ().
  3. Math-prosto.ru ().

Домашнее задание

  1. Найти периметр прямоугольника, у которого длина 13 метров, а ширина — 7 метров.
  2. Найти полупериметр прямоугольника, если его длина — 8 см, а ширина — 4 см.
  3. Найти периметр прямоугольника, если его полупериметр — 21 дм.

На этом занятии мы познакомимся с новым понятием — периметр прямоугольника. Мы сформулируем определение этого понятия, выведем формулу для его вычисления. Также повторим сочетательный закон сложения и распределительный закон умножения.

На данном уроке мы познакомимся с периметром прямоугольника и его вычислением.

Рассмотрим следующую геометрическую фигуру (рис. 1):

Рис. 1. Прямоугольник

Данная фигура — прямоугольник. Вспомним, какие отличительные особенности прямоугольника мы знаем.

Прямоугольник — это четырехугольник, у которого четыре прямых угла и стороны попарно равны.

Что в нашей жизни может иметь прямоугольную форму? Например, книга, крышка стола или земельный участок.

Рассмотрим следующую задачу:

Задача 1 (рис. 2)

Вокруг земельного участка строителям понадобилось поставить забор. Ширина этого участка — 5 метров, длина — 10 метров. Забор какой длины получится у строителей?

Рис. 2. Иллюстрация к задаче 1

Забор ставят по границам участка, поэтому, чтобы узнать длину забора, нужно знать длину каждой из сторон. У данного прямоугольника стороны равны: 5 метров, 10 метров, 5 метров, 10 метров. Составим выражение для подсчета длины забора: 5+10+5+10. Воспользуемся переместительным законом сложения: 5+10+5+10=5+5+10+10. В данном выражении есть суммы одинаковых слагаемых (5+5 и 10+10). Заменим суммы одинаковых слагаемых произведениями: 5+5+10+10=5·2+10·2. Теперь воспользуемся распределительным законом умножения относительно сложения: 5·2+10·2=(5+10)·2.

Найдем значение выражения (5+10)·2. Сначала выполняем действие в скобках: 5+10=15. А затем повторяем число 15 два раза: 15·2=30.

Ответ: 30 метров.

Периметр прямоугольника — сумма длин всех его сторон. Формула для подсчета периметра прямоугольника : , здесь a — длина прямоугольника, а b — ширина прямоугольника. Сумма длины и ширины называется полупериметром . Чтобы из полупериметра получить периметр, нужно его увеличить в 2 раза, то есть умножить на 2.

Воспользуемся формулой периметра прямоугольника и найдем периметр прямоугольника со сторонами 7 см и 3 см: (7+3)·2=20 (см).

Периметр любой фигуры измеряется в линейных единицах.

На данном уроке мы познакомились с периметром прямоугольника и формулой его вычисления.

Произведение числа и суммы чисел равно сумме произведений данного числа и каждого из слагаемых.

Если периметр — это сумма длин всех сторон фигуры, то полупериметр — сумма одной длины и одной ширины. Мы находим полупериметр, когда работаем по формуле нахождения периметра прямоугольника (когда мы выполняем первое действие в скобках — (a+b)).

Список литературы

  1. Александрова Э.И. Математика. 2 класс. — М.: Дрофа, 2004.
  2. Башмаков М.И., Нефёдова М.Г. Математика. 2 класс. — М.: Астрель, 2006.
  3. Дорофеев Г.В., Миракова Т.И. Математика. 2 класс. — М.: Просвещение, 2012.
  1. Festival.1september.ru ().
  2. Nsportal.ru ().
  3. Math-prosto.ru ().

Домашнее задание

  1. Найти периметр прямоугольника, у которого длина 13 метров, а ширина — 7 метров.
  2. Найти полупериметр прямоугольника, если его длина — 8 см, а ширина — 4 см.
  3. Найти периметр прямоугольника, если его полупериметр — 21 дм.

Как найти длину окружности? Ответ на webmath.ru

Остались вопросы?

Здесь вы найдете ответы.

Каким образом можно вычислить длину окружности при условии, что площадь круга (S) является известной величиной?

Площадь круга (S) рассчитывается путем умножения числа Пи на длину его радиуса (R), возведенную в квадратную степень (S = ПR²). Из указанного равенства можно выразить радиус:

R² = S/ П

Если избавиться от квадратной степени, то получится:

R = √(S/П)

Длина окружности (L) рассчитывается путем умножения числа Пи на длину радиуса, и последующего умножения на два полученного в результате числа:

L = 2ПR

Если R = √(S/П), то L = 2П*√(S/П)

Каким образом можно найти длину окружности, диаметр которой составляет 2 см?

Длина окружности (L) представляет собой число, которое получено в результате умножения числа Пи на диаметр данной окружности:

L = П*D

В конкретном случае:

L = 3,14*2 = 6,28 см.

Ответ: Длина окружности с диаметром 2 см составляет 6,28 см.

Дан квадрат, вокруг которого описана окружность. Ее длина составляет 12 Пи см. Как можно найти длину окружности, вписанной в этот же квадрат?

Известно, что длина окружности (L) рассчитывается путем умножения на два произведения числа Пи и длины ее радиуса (R). Формула выглядит так:

2ПиR

Из данной формулы можно выразить радиус

R = 12пи/2пи = 6 см

Радиус окружности, описанной около квадрата, равен 6 см.

Теперь можно вычислить сторону квадрата, вокруг которого описана данная окружность. Ее длина составляет R корней из 2:

а = 6 корней из 2.

Рассчитываем длину малого радиуса (r), который равен половине длины стороны квадрата:

r = а/2 = 6 корней из 2/2 = 3 корней из 2.

Длина окружности, вписанной в квадрат, рассчитывается по той же формуле:

L = 6 корней из 2 Пи.

Каким образом можно вычислить длину окружности, а также найти ее площадь, при условии, что радиус этой окружности равен 30 см?

Радиус окружности, равный 30 см, обозначается как R.

Площадь окружности можно найти, умножив число Пи на квадрат длины ее радиуса:

S = πR²

Подставим в формулу известные величины:

S = π*30² = 900π см. кв.

Длина окружности обозначается как С и рассчитывается путем умножения на 2 произведения числа Пи и ее радиуса:

C = 2πR

Снова подставляем в формулу величины, которые известны:

C = 2π*30 = 60π см

Ответ: Площадь окружности равна 900π см², а ее длина составляет 60π см.

Дана окружность, в которую вписан правильный треугольник. Его площадь составляет 12√3 см кв. Как можно вычислить длину окружности в данном случае?

По условию задачи известно, что треугольник является правильным, что означает равенство всех его трех сторон.2 * √3 ÷ 4

Зная площадь, мы получаем возможность вычислить длину стороны а. Она будет равна ± √48. Учитывая то, что сторона не может быть отрицательной величиной, можно говорить о том, что сторона а равна √48.

После того как длина стороны стала известна, можно приступить к вычислению площади описанной и вписанной окружности. Для этого не достает еще одного элемента – длины радиуса.

Радиус описанной окружности (R) равен длине стороны треугольника, разделенной на √3:

R = √48 ÷ √3 = 4 см.

Радиус вписанной окружности (r) можно получить, разделив на 2 радиус описанной окружности:

r = 4/2 = 2 см.

Вычисленные длины радиусов вписанной и описанной окружностей позволяют определить ее длину ℓ, которая равна произведению числа Пи и радиуса окружности, умноженному на 2:

ℓ = 2πR

В нашем случае длина описанной окружности рассчитывается как:

ℓ= 2πR = 2π4 = 8π

Длина вписанной окружности будет составлять:

ℓ= 2πR = 2π2 = 4π

Известно, что радиус окружности равен 12 см. Как вычислить ее площадь и длину при Пи=3,14?

В условии задачи говорится о том, что радиус окружности R равен 12 см. Ее длина может быть вычислена посредством умножения на 2 произведения длины радиуса и числа Пи:

C=2πR

Известно, что число Пи – это константа, равная 3,14. Тогда длина окружности (С)высчитывается следующим образом:

C=2*3*12=72 см

Площадь окружности можно найти, умножив число Пи на длину ее радиуса, возведенную в квадратную степень:

S=πR²=3,14*12²=3,14*144=452,16 см кв.

Как можно вычислить радиус окружности и ее диаметр, если известно, что ее длина составляет 20 Пи см?

По условию задачи длина окружности равна 20 Пи см. Зная формулу, по которой вычисляется длина окружности, можно записать следующее равенство:

2Пи = 2ПиR

Можно сократить Пи в обеих частях записанного равенства, в результате чего получится, что:

2R = 20

Теперь высчитаем, чему равна длина радиуса окружности:

R = 20/2 = 10 см.

Длина диаметра равна длине радиуса, умноженной на 2:

D = R*2 = 10*2 = 20 cм.

Длина дуги окружности составляет 6Пи см, при этом ее градусная мера равна 120 градусов. Каким образом можно вычислить радиус окружности?

Полная градусная мера любой окружности равна 360 градусов. В случае, описанном в задании, градусная мера окружности составляет 120 градусов, что равно 1/3 части 360 градусов. Это позволяет сделать вывод о том, что длина окружности (L) может быть рассчитана следующим образом:

L = 6Пи * 3 = 18Пи

Формула, по которой вычисляется длина окружности, выглядит так:

L =2пR

Из данной формулы можно выразить радиус (R):

R = L/2Пи

В заданном случае длина радиуса будет равна:

18Пи/2Пи = 9 см.

Как на радиус окружности повлияет увеличение ее длины на 9,42 см?

Обозначим прежнюю длину окружности как L, а новую – как L₁. Тогда можно записать следующее равенство:

L₁ — L = 9,42 см

Прежний радиус окружности примем за R, а новый ее радиус, который получится в результате увеличения длины, обозначим как R₁. Для того чтобы вычислить ее значение, следует сначала записать формулу, по которой вычисляется прежняя длина данной окружности:

L = 2πR

Тогда формула для вычисления новой длины окружности будет иметь такой вид:

L + 9,42 = 2πR₁

Отнимем от новой длины старую, и в итоге получим:

2πR₁ — 2πR = 9,42 см.

Перенесем 2Пи из левой части равенства в правую:

R₁ — R = 9,42 : 2π = 1,5 см.

Ответ: В результате увеличения длины окружности на 9,42 см ее радиус станет больше на 1,5 см.

Как можно вычислить радиус окружности, вписанной в правильный треугольник, зная то, что площадь данного треугольника превышает площадь окружности на 27√3-9π?

Радиус окружности, которая вписана в правильный треугольник, обозначим r. Ее площадь (S) является произведением числа Пи и квадрата ее радиуса:

S = πr²

В случае треугольника, все стороны которого одинаковы, радиус вписанной в него окружности равен третьей части высоты, являющейся также и медианой.

Площадь правильного треугольника рассчитывается так:

Sтр = (1/2)*(2r/tg30)*3r = (1/2)*(2r√3)*3r = 3√3r².

Согласно условию задачи 3√3r² = πr² + 27√3 — 9π.

Перенесем πr² из левой части равенства в правую, изменив его знак на противоположный:

3√3r² — πr² = 27√3 — 9π

Вынесем в правой части равенства r² за скобки. То же самое сделаем с числом 9 в левой части равенства:

r²(3√3 — π) = 9(3√3 — π)

Сокращаем в обеих частях одинаковый множитель (3√3 — π) и получаем:

r² = 9

Таким образом, радиус окружности равен корню квадратному из 9:

r =3 см.

Дано две окружности, радиус одной из которых пятикратно превышает радиус другой. Каким образом вычислить радиус каждой из этих окружностей, если известно, что диаметр второй из окружностей на 240 мм меньше, чем диаметр первой?

Обозначим радиус второй окружности буквой х. В данном случае радиус первой окружности нужно обозначить как 5х. Известно, что разница между длинами диаметров двух окружностей равна 240 мм. На основании этого можно составить следующее равенство:

5х-х=240:2, что равно 4х=120

Теперь можно найти значение х:

х=120:4=30 мм.

Таким образом, радиус второй окружности равен 30 мм. Это позволяет вычислить радиус первой окружности, который в 5 раз больше радиуса второй из них:

30*5=150 мм.

Как можно высчитать радиус окружности, когда известна ее градусная мера и длина дуги?

Длина дуги обозначена как L. В качестве обозначения ее градусной меры используется α. Через R обозначена длина радиуса данной окружности. Формула расчета длины дуги выглядит так:

L = πR · α / 180°

Это же равенство может быть переписано следующим образом:

πR · α = L · 180°

Отсюда выведем радиус:

R = L · 180° / (π·α).

Как высчитать радиус окружности, длина дуги которой составляет 3,14 см, а ее градусная мера равна 18 градусам?

Длина окружности (L) равна произведению числа Пи и радиуса, которое умножено на 2:

L = 2Пиr

Согласно заданию, длина дуги равна 3,14, что равно значению константы Пи.

Дуга способна поместиться в длине окружности 2 пи r/пи =2 r раз

Подставив в равенство значения, которые известны, мы получим:

360:18=20 раз

Длина окружности будет равна:

3,14*20=20Пи

2Пиr = 20Пи

Сократим 2Пи в каждой из частей равенства и получим, что:

r=10 см.

Площадь круга составляет 169Пи см. Чему равна длина окружности в данном случае?

Для решения поставленной задачи следует записать формулу расчета площади круга:

S=πr2

Эта величина указана в задании, и составляет 169Пи. Это значит, что:

πr2 = 169π

Можно сократить одинаковый множитель Пи в обеих частях равенства:

r2= 169

r = √169 = 13 см.

Длина окружности обозначена С. Она считается по следующей формуле:

С = 2πr

Длина радиуса уже известна, и ее можно подставить в формулу расчета длины окружности:

С = 2* π*13 = 26π см.

В окружность вписан квадрат площадью 36 дм кв. Чему в этом случае будет равна площадь круга и длина окружности?

Известно, что площадь круга представляет собой величину, равную длине стороны этого квадрата, возведенной во вторую степень Sкв = а². Это значит, что в данном случае а² = 36 дм. Для того чтобы найти значение а, нужно извлечь квадратный корень из 36:

а = √36 = 6 дм.

Длина диагонали (d) квадрата считается по приведенной ниже формуле:

d = a√2 = 6√2 дм.

Радиус (R)окружности, которая описана около квадрата, равен половине длины ее диагонали:

R = d/2 = 3√2 дм.

Площадь круга можно посчитать, умножив число Пи на квадрат его радиуса:

S = πR² = π · (3√2)² = 18π дм. кв.

Длина окружности рассчитывается посредством умножения на два числа Пи, после чего полученное число умножается на длину радиуса окружности:

C = 2πR = 2π · 3√2 = 6√2π дм.

Длина окружности составляет 3,5 дм. Диаметр второй окружности равен 5/7 ее диаметра. Как вычислить длину второй окружности?

Ниже записана формула, которая используется для того, чтобы рассчитать длину окружности:

С = Пи*d,

где Пи – это константа, равная 3,14, а d – это диаметр окружности.

Отношение длины первой окружности к длине второй окружности равно отношению их диаметров:

C/C1 = d/d1

d1 = 5/7 d

В условии сказано, что длина первой окружности С = 3,5 дм. Таким образом:

C1 = 5/7 *C = 5/7 * 3,5 = 2,5 дм.

Длина радиуса окружности составляет 14 см. Какова будет ее длина при условии, что П=22/7?

Для того чтобы узнать длину окружности (C), следует воспользоваться формулой, предназначенной для ее расчета. Она выглядит так:

C = П*R*2

Если подставить в эту формулу величины, которые даны по условию задачи, то получим:

22/7*14*2=22/7*28/1=88 см.

Ответ: Длина окружности равна 88 см.

Какой будет длина окружности при условии, что ее половина составляет 25,5 см?

Длина окружности равна длине ее половины, умноженной на 2. Это значит, что в данном случае нужно умножить число 25,5, обозначающее половину длины окружности, на 2:

25,5*2 = 51 см.

Круг имеет площадь Пи м кв. Какова будет длина окружности данного круга?

Для вычисления длины окружности необходимо число Пи умножить на два и умножить на длину его радиуса (2πR). Для данной задачи это будет выглядеть следующим образом:

2π · 3√2 = 6√2π дм.

Для того чтобы посчитать площадь круга, необходимо умножить число Пи на радиус, взятый в квадрат (S = πR²). По условию задачи площадь круга равна Пи м кв. Это значит, что:

πR² = π

Из данного равенства можно выразить R

R — √π/π = 1

Зная длину радиуса, можно переходить к вычислению длины окружности (С):

C = 2πR = 2π x 1 = 2π

Ответ: Длина окружности равна 2π.

Какова формула длины окружности, при условии, что длина ее радиуса составляет R?

С целью вычисления длины окружности (С) используется приведенная ниже формула:

C=2πR

Ее составляющими является постоянное число Пи и радиус окружности (R), длину которой необходимо вычислить.

Какова формула расчета длины окружности, диаметр которой составляет 15 см?

Если длина диаметра окружности является известной величиной, то его нужно умножить на постоянное число Пи, равное 3,14, для того чтобы найти длину этой окружности. Формула выглядит так:

С = πD

В условии говорится, что диаметр окружности равен 15 см:

С = 3,14 * 15 = 47,1 cм.

Ответ: Длина окружности равна 47,1 см.

В результате деления длины окружности на величину ее диаметра получается число, приблизительно равное 22/7. Каким образом можно высчитать длину окружности с диаметром 10 см?

Для расчета длины окружности (С) нужно знать длину ее радиуса (R) или диаметра (d). Тогда могут быть использованы следующие формулы:

C = 2πR или C = πd

По условию задания d = 10 см, а π = 22/7. Тогда длина окружности будет равна:

C = πd = (22/7) * 10 = 220/7 ≈ 31,4 см.

В каком виде представлены формулы, которые используются для вычисления площади круга и длины окружности (через диаметр и через радиус)?

В случае, если длина диаметра (d) или длина радиуса (R) окружности известны, то эти величины можно использовать для нахождения длины окружности. При этом следует воспользоваться одной из формул:

С=πd или С=2πR.

Эти величины также помогут вычислить площадь круга. Формулы выглядят следующим образом:

S=πr² или S=π(d\2)².

Можно ли вычислить длину диаметра окружности, если известна только ее длина?

Нужно записать формулу расчета длины окружности, для того чтобы понять, существует ли взаимосвязь между этой величиной и диаметром окружности:

L = π·d

Очевидно, что длина окружности является результатом умножения числа Пи на длину ее диаметра.

Если длина окружности известна, то ее можно использовать для определения диаметра (d). Это можно сделать следующим образом:

d = L/π.

Во сколько раз длина окружности превышает ее диаметр, и в каком виде представлена формула ее расчета через диаметр?

Длину окружности (С) можно рассчитать через диаметр (d), если воспользоваться нижеприведенной формулой:

С = π*d

Это формула демонстрирует, что длина окружности больше длины ее диаметра в π раз. Именно отношение длины окружности к величине ее диаметра и является числом π.

Какова формула вычисления отношения длины окружности к величине, означающей ее диаметр?

Число π представляет собой константу, которая получается в результате деления длины окружности (С) на ее диаметр (d). В виде формулы это выглядит так:

π = С/d

Площадь круга составляет 185 см кв. Как вычислить 30% от длины окружности при заданных исходных?

Располагая информацией о том, что площадь круга равна произведению числа Пи и квадрата ее радиуса (S=πr²), можно через нее выразить радиус:

r² = S/π = 185/π

Избавляемся от квадратной степени:

r = √(185/π) см.

Следующим шагом в решении задачи станет вычисление длины окружности, которая находится путем умножения на 2 числа Пи и радиуса окружности:

С=2πr= C=2π√(185/π) = 2√(185π) см.

На последнем этапе находим 30%. Принимаем всю длину окружности за 100%:

2√(185π) — 100%

х — 30%

Тогда х можно найти следующим образом:

х=(30*2√(185π))/100 = 0,6√(185π) см.

Как выглядят формулы определения длины окружности через радиус и через диаметр? В какое количество раз длина диаметра окружности меньше ее длины?

Существует две формулы, которые предназначены для расчета длины окружности (С). Они отличаются друг от друга тем, что элементом одной из них является радиус (r), а другой – диаметр (D):

C=2Пr и C=ПD.

Для того чтобы понять, во сколько раз длина окружности превышает длину ее диаметра, нужно произвести деление этих величин:

С/D

В результате получается число Пи, которое является постоянным и имеет значение примерно 3,14.

Длина окружности, обозначаемая как L, может быть вычислена при условии, что известен ее диаметр (D). При этом следует воспользоваться формулой L = Пи*D. Можно ли использовать данную формулу с целью вычисления длины диаметра окружности, длина которой составляет 126 м. (число Пи считать равным 3)?

Формула расчета длины окружности (С) через диаметр (D) выглядит так:

С = Пи*D

Исходя из условий задания, это равенство может быть записано в следующем виде:

126=3*D

Отсюда можно выразить диаметр:

D=126:3=42 м.

Периметр и площадь прямоугольника / Блог / Справочник :: Бингоскул

Периметр — это сумма длин всех сторон многоугольника.

 

  • Для вычисления периметра геометрических фигур используются специальные формулы, где периметр обозначается буквой «P». Название фигуры рекомендуется писать маленькими буквами под знаком «P», чтобы знать чей периметр ты находишь.
  • Периметр измеряется в единицах длины: мм, см, м, км и т.д.

Отличительные особенности прямоугольника
  • Прямоугольник – это четырехугольник.
  • Все параллельные стороны равны
  • Все углы = 90º.
  • Например в повседневной жизни прямоугольник может встречаться в виде — книги, монитора, крышки от стола или двери.

 

Как вычислить периметр прямоугольника

Существует 2 способа его нахождения:

 

  • 1 способ. Складываем все стороны. P = a + а + b + b
  • 2 способ. Сложить ширину и длину, и умножить на 2. P = (a + b) · 2. ИЛИ Р = 2 · а + 2 · b. Стороны прямоугольника, которые лежат друг против друга (противолежащие), называются длиной и шириной.

 

«a» — длина прямоугольника, более длинная пара его сторон.

«b» — ширина прямоугольника, более короткая пара его сторон.

Пример задачи на подсчет периметра прямоугольника:

Вычислите периметр прямоугольника, есть его ширина равна 3 см., а длина — 6.

 

 

Запомни формулы вычисления периметра прямоугольника!

 

Формулы  периметра прямоугольника

 

Полупериметр — это сумма одной длины и одной ширины.

  • Полупериметр прямоугольника — когда выполняешь первое действие в скобках – (a+b).
  • Чтобы из полупериметра получить периметр, нужно его увеличить в 2 раза, т.е. умножить на 2.

Как найти площадь прямоугольника

Формула площади прямоугольника S= a*b

 

Если в условии известна длина одной стороны и длина диагонали, то площадь найти можно, используя в таких задачах, теорему Пифагора, она позволяет найти длину стороны прямоугольного треугольника если известны длины двух других сторон.

  • Теорема Пифагора: a2 + b2 = c2, где a и b – стороны треугольника, а с – гипотенуза, самая длинная сторона.

Помни!

  1. Все квадраты – прямоугольники, но не все прямоугольники – квадраты. Так как:
    • Прямоугольник — это четырехугольник со всеми прямыми углами.
    • Квадрат — прямоугольник, у которого все стороны равны.
  2. Если ты находишь площадь, ответ всегда будет в квадратных единицах (мм2, см2, м2, км2 и т.д.)

 

Смотри также: Основные формулы по математике

 

Решай задание 8 по математике база с ответами

Калькулятор длины и ширины прямоугольника

Калькулятор длины и ширины прямоугольника — это бесплатный онлайн-инструмент, который помогает найти длину стороны прямоугольника.

Что такое длина и ширина калькулятора прямоугольника?

Прямоугольник – это замкнутая двумерная фигура с четырьмя сторонами и четырьмя углами. Длина противоположных сторон равна и параллельна друг другу. Калькулятор длины и ширины прямоугольника Cuemath — это бесплатный онлайн-инструмент, который вычисляет длину и ширину прямоугольника за несколько секунд.

Примечание. Введите число до 3 цифр.

 

Как использовать калькулятор длины и ширины прямоугольника?

Выполните описанные ниже шаги, чтобы найти длину и ширину прямоугольника.

  • Шаг 1: Введите значение площади и периметра прямоугольника в соответствующие поля ввода.
  • Шаг 2: Нажмите « Вычислить «, чтобы найти соответствующую длину и ширину прямоугольника.
  • Шаг 3: Нажмите « Сброс », чтобы очистить поля и ввести новые значения.

 

Как рассчитать длину и ширину прямоугольника?

Формула площади «A» прямоугольника, длина и ширина которого равны «l» и «w» соответственно, является произведением длины и ширины, то есть « A = l × w ».

Формула для периметра ‘P’ прямоугольника, длина и ширина которого равны ‘l’ и ‘w’ соответственно, равна P = 2(l + w) .

Чтобы сначала вычислить длину и ширину прямоугольника, вычислите значение ширины ‘w’, используя формулу площади прямоугольника, то есть ‘ w = A/l’ . Затем подставляем значение ширины в формулу периметра прямоугольника и упрощаем значение длины ‘l’, то есть

P = 2 (l + A/I).

Затем подставьте значение длины ‘l’ прямоугольника в уравнение w = A/l и упростите, чтобы найти ширину ‘w’.

Давайте на примере узнаем, как найти длину и ширину прямоугольника.

Хотите найти сложные математические решения за считанные секунды?

Воспользуйтесь нашим бесплатным онлайн-калькулятором, чтобы решить сложные вопросы. С Cuemath находите решения простыми и легкими шагами.

Забронируйте бесплатный пробный урок

Решено Пример:

Если площадь и периметр прямоугольника составляют 8 квадратных единиц и 12 единиц соответственно. Какова длина и ширина прямоугольника?

Решение:

Подставьте значения площади в формулу «A = l × w» и упростите, чтобы найти ширину «w» в виде длины «l».

А = Д × Ш
8 = д × ш
ш = 8/л

Подставим значение ширины в формулу периметра прямоугольника и упростим значение длины ‘l’, то есть P = 2 (l + A/I).

Р = 2 (л + ш)
12 = 2 (л + 8/л)
6л = л 2 + 8
л 2 — 6л + 8 = 0
l = 4 единицы (или) 2 единицы.

Подставьте значение длины ‘l’ прямоугольника в уравнение w = A/l и упростите, чтобы найти ширину ‘w’.

ш = А/л
Если l = 4 единицы, то w = 8/4 = 2 единицы.
Если l = 2 единицы, то w = 8/2 = 4 единицы.

Следовательно, l = 4 единицы (или) 2 единицы
w = 2 шт. (или) 4 шт.
Теперь воспользуемся нашим онлайн-калькулятором длины и ширины прямоугольника и найдем длину и ширину прямоугольника, если его площадь и периметр следующие:

  • Площадь = 80 квадратных единиц, периметр = 36 единиц
  • Площадь = 72 квадратных единицы, периметр = 40 единиц

Как найти длину и ширину прямоугольника, зная площадь

Обновлено 3 ноября 2020 г.

Автор Chris Deziel

Если вы знаете длину и ширину прямоугольника, вы можете вычислить его площадь.Однако эти две величины независимы, поэтому вы не можете выполнить обратный расчет и определить их обе, если знаете только площадь. Вы можете вычислить один, если знаете другой, и вы можете найти оба в особом случае, когда они равны, что делает фигуру квадратной. Если вы также знаете периметр прямоугольника, вы можете использовать эту информацию, чтобы найти два возможных значения длины и ширины.

Определение длины или ширины, когда вы знаете другой стороны следующим соотношением:

A = L × W

Если известна ширина, легко найти длину, переставив это уравнение, чтобы получить

L = \frac{A}{W}

Если знать длину и ширину переставьте так, чтобы получилось

W = \frac{A}{L}

Пример: площадь прямоугольника 20 квадратных метров, а его ширина 3 метра.2}{3 \text{ m}} = 6,67 \text{ m}

Квадрат, особый случай

Поскольку у квадрата четыре стороны одинаковой длины, площадь определяется как ​ A ​ =​ л 2 . Зная площадь, можно сразу определить длину каждой стороны, потому что это квадратный корень из площади.

Пример: Каковы длины сторон квадрата площадью 20 м 2 ?
Длина каждой стороны квадрата равна квадратному корню из 20, что равно 4.47 метров.

Нахождение длины и ширины, зная площадь и периметр

Если вам известно расстояние вокруг прямоугольника, которое является его периметром, вы можете решить пару уравнений для L и W. Первое уравнение — это уравнение для площадь,

A = L × W

, а второй — периметр,

P = 2L + 2W

Чтобы найти одну из переменных — скажем, W — вы должны исключить другую.2 — 8A}}{2}

Знание периметра может не дать однозначного ответа, но два ответа лучше, чем ничего.

Как найти высоту ромба

Параллелограмм — это плоская фигура, противоположные стороны которой параллельны и равны по длине. Ромб — это параллелограмм с четырьмя равными (конгруэнтными) сторонами, например ромб. Квадраты и прямоугольники также являются типами параллелограммов. Вы можете вычислить высоту ромба, если знаете другие значения, такие как площадь, основание или диагонали.

TL;DR (слишком длинно, не читал)

Чтобы найти высоту ромба, используйте формулу высота = площадь ÷ основание.Если вы знаете диагонали ромба, но не знаете его площадь, используйте формулу площадь = (d1 x d2) ÷ 2, затем примените площадь к первой формуле.

Свойства ромба

Каким бы большим ни был ромб, всегда действуют определенные правила. Все его стороны равны, его противоположные углы равны, а две его диагонали перпендикулярны (это означает, что они делят друг друга пополам под углом 90 градусов). Высота ромба (также называемая его высотой) — это кратчайшее перпендикулярное расстояние от его основания до противоположной стороны.Основанием ромба может быть любая из его четырех сторон, в зависимости от того, как он расположен.

Определение высоты по площади и основанию

Формула высоты ромба: высота = площадь ÷ основание. Например, если вы знаете, что площадь ромба 64 см2, а основание 8 см, то получается 64 ÷ 8 = 8. Высота ромба 8 см. Помните, что основание — это одна из сторон, и они равны по длине, поэтому, если вы знаете длину одной из сторон, вы знаете длину всех сторон.

Одна и та же формула применяется независимо от размера ромба или единиц измерения. Например, у вас есть ромб с площадью 1000 дюймов и основанием 20 дюймов. Получится 1000 ÷ 20 = 50. Высота ромба 50 сантиметров.

Определение высоты по диагоналям

Если известны диагонали и основание ромба, но не площадь, используйте формулу площадь = (d1 x d2) ÷ 2. Например, если известно, что d1 равно 4 см, а d2 равно 6 см, получится (4 х 6) ÷ 2 = 12.Вы знаете, что площадь равна 12 см2. Если основание 2 см, получится 12 ÷ 2 = 6. Высота ромба 6 см.

Длина прямоугольника вдвое больше его ширины. Если площадь прямоугольника 72 квадратных дюйма, найдите его длину и ширину.

Доброе утро, Шелли,

. Формула или уравнение для определения площади — то, что вы хотите сделать с этой задачей — это A = L * W, где A равно площади, L равно длине, * — знак умножения, а W — ширина.

Вы ведь не знаете, какова ширина этого прямоугольника? Но вы знаете, что такое длина.

Итак, давайте присвоим значение x ширине, а значение 2x длине, справедливо?

Обратите внимание на задачу: 

«Длина прямоугольника вдвое больше его ширины».

Теперь мы можем подставить эти значения и решить уравнение для x.

A = L * W
72 = x * 2x
72 = 2x 2

Разделите обе части уравнения на два, оставив x самому себе, хорошо.

36 = x 2  

Чтобы избавиться от радикала, все, что вам нужно сделать, это извлечь квадратный корень из каждой стороны, и когда вы это сделаете, у вас останется x, верно?

√36 = x
x = 6 

Помните наше уравнение из предыдущего примера и информацию из задачи: «Длина прямоугольника вдвое больше его ширины?» Мы просто решили для ширины.Вы видите это?

Теперь мы также знаем, что длина в два раза больше ширины, то есть она равна 2 (x) или 12. Следовательно, ваши размеры: 

Ш = 6 
Д = 12 

Давайте проверим нашу работу, хорошо?

Лучший способ, который я рекомендую, это определить, будет ли доказательство вашего ответа использовать одно и то же уравнение. В данном случае это уравнение площади. A = L * W 

Верно ли следующее, когда мы подставляем наши значения?

72 = 6 *12 
72 = 72 Да, проверяет.Длина в два раза больше его ширины в прямоугольнике. да.

Надеюсь, я помог вам и желаю вам хорошего дня. Пожалуйста, не стесняйтесь оставлять любые отзывы под этим ответом в разделе комментариев ниже. Если вам нужна дополнительная помощь, не стесняйтесь обращаться к любому преподавателю .

Лучший!

Длина прямоугольника на 8 больше ширины. Площадь 609 квадратных метров. Найдите длину и ширину прямоугольника.

Дилан Дж.

спросил • 04.04.17

Застрял на этом, может кто-нибудь помочь?

Более

ш(ш + 8) = 609

Вт 2 + 8 Вт — 609 = 0

(ш + 29)(ш — 21) = 0

 

ш + 29 = 0

ш =-29

Мы не измеряем отрицательными числами!

 

Вт — 21 = 0

ш = 21

 

л = 21 + 8 = 29

Все еще ищете помощи? Получите правильный ответ, быстро.

ИЛИ
Найдите онлайн-репетитора сейчас

Выберите эксперта и встретьтесь онлайн. Никаких пакетов или подписок, платите только за то время, которое вам нужно.


¢ € £ ¥ ‰ µ · • § ¶ SS ‹ › « » < > ≤ ≥ – — ¯ ‾ ¤ ¦ ¨ ¡ ¿ ˆ ˜ ° − ± ÷ ⁄ × ƒ ∫ ∑ ∞ √ ∼ ≅ ≈ ≠ ≡ е ∉ ∋ ∏ ∧ ∨ ¬ ∩ ∪ ∂ ∀ ∃ ∅ ∇ * ∝ ∠ ´ ¸ ª º † ‡ А А Â Ã Ä Å Æ Ç Э Э Ê Ë Я Я Я Я Ð С Ò О Ô Õ О Ø О Ш Ù Ú Û О Ý Ÿ Þ а а â г ä å æ ç э э э ë я я я я ð с ò о ô х ö ø œ ш ù ú û ü ý þ ÿ А В Г Δ Е Ζ Η Θ я Κ Λ М N Ξ О Π Р Σ Т Υ Φ Χ Ψ Ом α β γ дельта ε ζ η θ я κ λ мю ν ξ о π р ς о т υ ф х ψ ю ℵ ϖ ℜ ϒ ℘ ℑ ← ↑ → ↓ ↔ ↵ ⇐ ⇑ ⇒ ⇓ ⇔ ∴ ⊂ ⊃ ⊄ ⊆ ⊇ ⊕ ⊗ ⊥ ⋅ ⌈ ⌉ ⌊ ⌋ 〈 〉 ◊

длина прямоугольника в 4 раза больше ширины площадь 285 кв.м найдите длину и ширину прямоугольника

Генезис Т.2+4w=285

w=15

l=19

Все еще ищете помощи? Получите правильный ответ, быстро.

ИЛИ
Найдите онлайн-репетитора сейчас

Выберите эксперта и встретьтесь онлайн. Никаких пакетов или подписок, платите только за то время, которое вам нужно.


¢ € £ ¥ ‰ µ · • § ¶ SS ‹ › « » < > ≤ ≥ – — ¯ ‾ ¤ ¦ ¨ ¡ ¿ ˆ ˜ ° − ± ÷ ⁄ × ƒ ∫ ∑ ∞ √ ∼ ≅ ≈ ≠ ≡ е ∉ ∋ ∏ ∧ ∨ ¬ ∩ ∪ ∂ ∀ ∃ ∅ ∇ * ∝ ∠ ´ ¸ ª º † ‡ А А Â Ã Ä Å Æ Ç Э Э Ê Ë Я Я Я Я Ð С Ò О Ô Õ О Ø О Ш Ù Ú Û О Ý Ÿ Þ а а â г ä å æ ç э э э ë я я я я ð с ò о ô х ö ø œ ш ù ú û ü ý þ ÿ А В Г Δ Е Ζ Η Θ я Κ Λ М N Ξ О Π Р Σ Т Υ Φ Χ Ψ Ом α β γ дельта ε ζ η θ я κ λ мю ν ξ о π р ς о т υ ф х ψ ю ℵ ϖ ℜ ϒ ℘ ℑ ← ↑ → ↓ ↔ ↵ ⇐ ⇑ ⇒ ⇓ ⇔ ∴ ⊂ ⊃ ⊄ ⊆ ⊇ ⊕ ⊗ ⊥ ⋅ ⌈ ⌉ ⌊ ⌋ 〈 〉 ◊

Площадь прямоугольников — объяснение и примеры

По определению, площадь прямоугольника — это область, охватываемая прямоугольником в двумерной плоскости .Прямоугольник — это двумерный многоугольник с четырьмя сторонами, четырьмя углами и четырьмя вершинами.

Прямоугольник состоит из двух сторон: длины (Д) и  ширины (Ш). Длина прямоугольника — это самая длинная сторона, а ширина — самая короткая сторона. Ширину прямоугольника иногда называют шириной (b).

Как найти площадь прямоугольника?

Площадь прямоугольника можно вычислить, подсчитав количество маленьких полных квадратов размером 1 * 1 кв.единиц, необходимых для покрытия прямоугольника.

Например, если количество подсчитанных полных квадратов равно 20, то это означает, что площадь прямоугольника составляет 20 квадратов.

Недостатком данного метода является то, что он не дает точных цифр площади, а также метод неприменим для нахождения площадей больших плоскостей.

Площадь прямоугольника Формула

Площадь прямоугольника – это произведение ширины и длины прямоугольника.

Следовательно, формула площади прямоугольника гласит:

Площадь прямоугольника = длина x ширина

A = L * W, где A — площадь, L — длина, W — ширина или ширина .

ПРИМЕЧАНИЕ: При умножении длины на ширину всегда следите за тем, чтобы вы использовали одни и те же единицы длины. Если они даны в разных единицах, измените их на одну и ту же единицу.

Давайте решим несколько примеров задач на площадь прямоугольника.

Пример 1

Найдите площадь прямоугольника, если его длина 25 м, а ширина 10 м.

Решение

A = l x w

Подставьте 25 вместо l и 10 вместо w.

= (25 x 10) м 2

= 250 м 2

Итак, площадь прямоугольника равна 250 м 2 .

Пример 2

Найдите площадь прямоугольника, длина и ширина которого равны 10 см и 3 см соответственно.

Раствор

Дано,
Длина (l) = 10 см.
Ширина (б) = 3 см.
Площадь прямоугольника = длина × ширина

= 10 × 3 см 2 .

= 30 см 2 .

Пример 3

Если периметр прямоугольника равен 60 см, а его длина в 5 раз больше ширины, найдите площадь прямоугольника.

Решение

Пусть ширина равна x.

Длина в 5 раз больше ширины, длина = 5x.

Но периметр прямоугольника =2(l + w) = 60 см

Подставьте 5x вместо l и x вместо w.

60 = 2(5x + x)

60 = 12x

Разделите обе части на 12, чтобы получить.

x = 5

Теперь подставьте x = 5 в уравнение длины и ширины.

Следовательно, ширина = 5 см, а длина = 25 см.

Но область прямоугольника = lxw

= (25 х 5) см 2

= 125 см

= 125 см 2

Пример 4

Найти область прямоугольника с длиной 12 см и диагональ 13 см.

Решение

Здесь ширина не указана, поэтому мы используем теорему Пифагора для определения ширины.

C 2 = A 2 + B 2 + B 2

13 2 = A 2 + 12 2 + 12 2

169 = A 2 + 144.

Вычтите 144 с обеих сторон .

169 – 144 = 2 + 144 – 144

25 = 2

Найдя квадратный корень из обеих частей, мы получаем.

а = 5

Следовательно, ширина прямоугольника 5 см.

Теперь вычислите площадь. Пример 5 длиной 20 м и шириной 10 м.

Решение

Чтобы найти общую стоимость цементирования пола, умножьте площадь пола на скорость цементирования.

площадь = l x w

= (20 х 10) m

= (20 x 10) m 2

= 200 м 2

Стоимость цементирования = площадь x Скорость цементирования

= 200 м 2 x $ 12.40 / м 2

= $2,480

Пример 6

Длина и ширина находятся в соотношении 11:7, а его площадь составляет 693 квадратных фута. Найдите его длину и ширину.

Решение

Пусть знаменатель длины и ширины = x

Следовательно, длина = 11x

Ширина = 7x

Площадь прямоугольника = L x W

693 Кв.футов = (11x) (7x)

693 кв. ft = 77x 2

Разделите обе стороны на 77.

x 2 = 9

Найдите площадь обеих сторон, чтобы получить;

х = 3.

Замена.

Длина = 11x = 11* 3 = 33

Ширина = 7x = 7 * 3 = 21

Следовательно, длина прямоугольника 33 фута, а его ширина 21 фут.

Пример 7

Длина прямоугольника 0,7 м, а ширина 50 см.Чему равна площадь прямоугольника в метрах?

Раствор

Длина = 0,7 м

Ширина = 50 см.

преобразуют 50 см в метрах путем деления 50 на 100. Итак, 50 см = 0,5 м

площадь = l x w

= (0,7 x 0,5) m 2

= 0,35 м 2

Пример 8

Размер прямоугольной стены 75 м на 32 м. Найдите стоимость покраски стены, если стоимость покраски 5 руб.м.

Раствор

Площадь = Д х Ш

= (75 х 32) м 2

= 2400 м 2

Чтобы получить стоимость покраски стены умножаем на площадь стены по скорости покраски.

Стоимость = 2400 м 2 x 5 рупий за кв. м

= 12 000 рупий

Пример 9 размеры, 1 м на 2 м.Найдите общее количество плиток, необходимых, чтобы полностью покрыть пол двора.

Решение

Сначала вычислите площадь пола двора и плитки.

Область дворного двора = (50 х 40) M 2

= 2000 м

= 2000 м

2

площадь плитки = (1 х 2) M 2

= 2 м 2

Чтобы найти количество плиток, необходимых для покрытия пола двора, мы делим пол двора на площадь плитки.

Количество плиток = 2000 м 2 /2 м 2

= 1000

Следовательно, для покрытия пола необходимо 1000 плиток.

Добавить комментарий

Ваш адрес email не будет опубликован.