Меню Закрыть

Мегаомметр что это такое: Мегаомметр — это… Что такое Мегаомметр?

Содержание

Мегаомметр — это… Что такое Мегаомметр?

Мегаомметр (от мега- ом и метр) — прибор для измерения больших значений сопротивлений. Отличается от омметра тем, что измерение сопротивления производятся на высоких напряжениях, которые прибор сам и генерирует (обычно 500,1000 или 2500 Вольт).

В приборах старых конструкций, для получения напряжений обычно используется встроенный механический генератор, работающий по принципу динамомашины. В настоящее время, мегаомметры также выполняются в виде электронных устройств, работающих от батарей.

Наиболее часто применяется для измерения сопротивления изоляции кабелей.

Мегаомметр используется для измерения высокого сопротивления изолирующих материалов (Диэлектриков) проводов и кабелей, разъёмов, трансформаторов, обмоток электрических машин и других устройств, а также для измерения поверхностных и объёмных сопротивлений изоляционных материалов. По этим значениям вычисляют коэффициенты абсорбции (увлажненности) и поляризации (старения изоляции).

Измерение мегаомметром сопротивления изоляции

Сопротивление изоляции характеризует ее состояние в данный момент времени и не является стабильным, так как зависит от целого ряда факторов, основными из которых являются температура и влажность изоляции в момент проведения измерения.

В ГОСТ 183-74 нормы сопротивления изоляции не определены, так как абсолютных критериев минимально допустимого сопротивления изоляции не существует. Они могут быть установлены в стандартах на конкретные виды машин или в ТУ с обязательным указанием температуры, при которой должны проводиться измерения, и методов пересчета показаний приборов, если измерения проводились при иной температуре обмоток.

Измерение сопротивления изоляции обмоток преследует цель установить возможность проведения ее испытаний высоким напряжением без повышенного риска повреждения хорошей, но имеющей большую влажность изоляции.

Измерения проводятся мегаомметром, номинальное напряжение которого выбирается в зависимости от номинального напряжения обмотки. Для обмоток • с номинальным напряжением до 500 В (660) В применяют мегаомметры на 500 В, для обмоток с напряжением до 3000 В — мегаомметры на 1000 В, для обмоток с номинальным напряжением 3000 В и более — мегаомметры на 2500 В и выше.

Степень увлажненности изоляции определяется не только по показаниям прибора в момент отсчета, но и характером изменения показания мегаомметра в процессе измерения, которое проводят в течение 1 мин. Запись показаний прибора делают через 15 с (обычное время установления показаний) после начала измерения (R15″) и в конце измерения — через 60 с после начала (R60″). Отношение этих показаний KA = R60″/R15″ называют коэффициентом абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 на 30-50 % больше, чем R15.

Мегаомметром измеряется также сопротивление изоляции термопреобразователей, заложенных в машины, и проводов, соединяющих термопреобразователи с доской выводов.

Сопротивление этой изоляции измеряется по отношению к корпусу и к обмоткам машины. Она не рассчитана на работу при высоких напряжениях, поэтому измерение ее сопротивления должно проводиться прибором с номинальным напряжением не выше 250 В.

Помимо сопротивления изоляции обмоток при проведении испытаний на месте установки машины измеряют также сопротивление изоляции подшипников, которая устанавливается для предотвращения протекания подшипниковых токов в машинах со стояковыми подшипниками.

Таким образом, сопротивление изоляции разных обмоток одной и той же машины, имеющих разное номинальное напряжение, например обмоток статора и ротора синхронного двигателя, нужно измерять разными мегаомметрами с различными номинальными напряжениями.

Ссылки

Замер сопротивления изоляции мегаомметром

Перед запуском системы в эксплуатацию и во время нее, нужно регулярно проводить измерение сопротивления изоляции отдельных проводов и кабельных участков. Такая проверка проводиться определенным прибором мегаомметром. Он замеряет сопротивления высоковольтных линий, низковольтных кабелей. С ним производят испытание контрольных кабельных систем, а также машин постоянного тока.

Устройство состоит из источника постоянного напряжения, токоизмерительной головки, тумблера-переключателя и токоограничивающих резисторов. Щупы прибора непосредственно подключаются к электрооборудованию.

Принцип работы прибора основан на законе Ома (величина тока зависит от напряжения и сопротивления). Мегаомметры сами генерируют определенную величину тока и напряжения и подают их на проверяемую линию, а затем показывают результаты. Такие электроприборы бывают аналоговые и цифровые. Главное отличие заключается в том, что аналоговый мегаомметр имеет встроенный ручной генератор, с помощью которого и создается необходимое напряжение.

Таким, образом, аналоговый (стрелочный) мегаомметр состоит из генератора тока, работающего от вращения ручки, сопротивления, амперметра со шкалой, а также клемм, к которым при определении нужных параметров подсоединяются проводки: заземление, линия и экран. К минусам прибора относятся большая погрешность шкалы и необходимость поддержания неподвижности корпуса прибора.

Переключатель выставляется на пределы измерения. На провод подается напряжение, генерируемое самим прибором. Разница величин указывает на потери. Если показатели уменьшаются – значит можно говорить о повреждении изоляции. Большая утечка представляет опасность проявления короткого замыкания со всеми вытекающими последствиями.

Электронный мегаомметр, в котором напряжение формируется электросхемой на аккумуляторах, замер реализуется посредством измерителя аналогового типа. Микропроцессорные мегаомметры компактны и имеют ЖК-дисплей.

Работники компании «Инж Сервис» имеют все необходимые допуски и могут замерить сопротивление изоляции мегаомметром на любых объектах Москвы и московского региона. Важно помнить, что эти приборы применяются на электроустановках с высоким напряжением. Поэтому работать с ними должны 2 специалиста и более, имеющие группы IV и III по электробезопасности.

Как заказать

Мегаомметр, что это такое и как им пользоваться?


Сделать мегаомметр своими руками

Если зарядить электролитический конденсатор, скажем до 1000 вольт, а последовательно с ним включить стрелочную головку с током полного отклонения 50 микроампер и резисторы для установки тока отклонения, то можно ли будет такой ерундовиной пользоваться как мегаомметром? Пусть показания будут неточными, пусть это будет только грубый пробник. То есть, получится простейший омметр на один предел измерений. В принципе, должно ведь это как-то работать. Если где-то в изоляции есть пробой, то при приложении 1000 вольт должен пойти в этом месте ток.
Задумка не плохая,но нужно учитывать,что измеряемая деталь(изделие)в сухом состоянии может быть и «ГУТ».а при соприкосновении с водой — утечка.Даже ТЕНы на «холодную» не «текут»,а после 10-20 мин-ХОПА.

Ты прямо-таки попал пальцем в небо

Конденсатор электролитический зачем? Наверное что бы при случайном касании щупов искры из глаз сыпались. Для измерения хватит и долей микрофарада. И маломощный преобразователь в придачу.

Lenchik

, Ничего из глаз не посыплется. Потому что токоограничительные резисторы будут стоять, которые ток до 50 мкА уменьшат при КЗ щупов. Причем оба щупа будут включены через резисторы. А электролит — ну, чтоб дольше держал. 10 — ти мкФ вполне хватит. Устройство должно подключаться к розетке, а 1000 В образовываться при помощи умножителя напряжения. На время измерений выключать из розетки. Резисторы на оба щупа — для развязки с сетью на тот случай, если прибор будет включен в розетку.

ДОБАВЛЕНО 16/09/2013 00:25

У меня, вообще-то уже есть действющая модель. Но там только удвоитель напряжения, поэтому не 1000 В. получается, а всего около 620. Только я я чет понять не могу, работает она как надо, или нет. Или вообще это затея пустая.

Lenchik

, Ничего из глаз не посыплется. Потому что токоограничительные резисторы будут стоять, которые ток до 50 мкА уменьшат при КЗ щупов. Причем оба щупа будут включены через резисторы. А электролит — ну, чтоб дольше держал. 10 — ти мкФ вполне хватит. Устройство должно подключаться к розетке, а 1000 В образовываться при помощи умножителя напряжения. На время измерений выключать из розетки.

ДОБАВЛЕНО 16/09/2013 00:25

У меня, вообще-то уже есть действющая модель. Но там только удвоитель напряжения, поэтому не 1000 В. получается, а всего около 620. Только я я чет понять не могу, работает она как надо, или нет. Или вообще это затея пустая.

Или ты шутишь,или это — утроитель напряжения

.

Или ты снова прикол сморозил

С тобой не соскучишься.

Попробую завтра набросать схему по «твоей идее».А «по твоей» схеме — толку никакого.

только у него шкала нелинейная и обратная.шкалу придется самому рисовать.

Электролит там явно не нужен, да и де ты такой возьмёшь — на 1000в?! Хотя если поискать то конечно, но для пробника хватит и обычной плёнки.

При испытании изоляции мегоомметром учитывается не только подаваемое напряжение, но и время испытания. С помощью такой «пукалки» можно увидеть конкретный коротыш, какой можно увидеть и обычным мультиметром. Если пробой не полный, Вы его не увидете, а вот мегоомметром увидете по дёрганию стрелки а иногда по искре в повреждённом месте. Испытательное напряжение должно в несколько раз привышать рабочее.

Morlock

, а несколько электролитов на 400В последовательно включить разве трудно? А в умножителе напряжения они как раз так и оказываются включены. Выдергиваем вилку из розетки и, пока кондеры не разрядились, можно пользоваться. Как видно, наращивать напряжение — не проблема. А подключаясь к разным каскадам умножителя, можно и менять его (но тогда параллельно еще и придется менять значения R2 и R3, что приведет к усложнению схемы, поэтому я просто остановился бы на 1000В, то есть на трех каскадах умножителя).

Настоящий мегаомметр, как я понимаю, должен поддерживать на щупах прибора (т.е. на тестируемом участке) постоянное напряжение и замерять ток через участок. А у меня этого не будет, значит напряжение на щупах будет сильно меняться в зависимости от сопротивления измеряемого участка. Следовательно, не будет чувствительности. Для примера добавлю, что у «модели», о которой я упоминал выше, тестер на щупах показывает напряжение не 620В, до которых заряжены конденсаторы, а только 250. То есть тестер своим внутренним сопротивлением просаживает напряжение на токоограничительных резисторах R2 и R3.

ДОБАВЛЕНО 20/09/2013 13:50

В реале я сейчас имею вот это

ДОБАВЛЕНО 20/09/2013 13:56

Рисовал, положив бумагу на колено. Вообще-то я и покрасивей могу.

Бессовестный Арбуз

, а что конкретно собираешся проверять?



Простой мегомметр

Для проверки сопротивления изоляции электродвигателя, кабеля или трансформатора применяют мегомметры на соответствующее напряжение. Иногда нужно ориентировочно оценить состояние изоляции глубинного насоса, сварочного трансформатора, электропроводки и т.д. Обычным мультиметром этого сделать нельзя, так как на его щупах очень низкое напряжение, которое не может быть использовано для проверки прочности изоляции.
Для этого нужен автономный источник постоянного высокого напряжения 1000В, а на производстве иногда 2500В. Схема такого источника приведена ниже. Устройство представляет собой генератор прямоугольных импульсов с регулируемой частотой и скважностью импульсов выполненный на микросхеме NE555. Регулировка позволяет подстроить работу повышающего трансформатора для получения на выходе устройства нужного напряжения. Повышающий трансформатор подбирается экспериментально, выполненный на замкнутом ферритовом магнитопроводе, соотношение витков примерно 1:50 — 1:100, диаметр провода не менее 0,08мм на вторичке и не менее 0,2мм на первичной обмотке. При изготовлении повышающего трансформатора нужно позаботиться о хорошей изоляции обмоток и выводов вторичной обмотки. При расположении на печатной плате деталей со стороны высокого напряжения, должны быть соблюдены достаточные расстояния между дорожками и местами пайки. В противном случае это может привести к пробою по поверхности платы. Сигналом наличия высокого напряжения служит неоновая лампочка. В качестве стрелочного прибора может быть любой микроамперметр зашунтированный шунтом и отградуированный по эталонным сопротивлениям. Я использовал индикатор уровня записи от советского магнитофона «Электроника». Питание осуществляется от двух последовательно соединённых батареек на 9В типа «Крона». Всё собирается в пластиковом корпусе и помещается в кармане.

МЕГАОММЕТР на Атмега328Р

Промышленный вариант мегаомметра достаточно габаритен и имеет немалый вес. Единственный достоинством этого монстра является, то что он поверен, но если вам в ремонте нужно срочно измерить сопротивление утечки, то электронный вариант более предпочтителен.

Поискав в интернете, простого устройства не нашел, единственный мегаомметр, который повторили радиолюбители был из журнала «Silicon Chip» октябрь 2009 года, но с доработанной прошивкой. Предлагаемый вашему вниманию прибор имеет габариты 100х60х25 ( корпуса были приобретены на AliExpress) и имеет вес не более 100 грамм. Устройство собрано на микроконтроллере Atmega328P. Питание осуществляется от литеевого аккумулятора и ток потребления составляет около 5 мА. Чем меньше сопротивление измеряемой цепи, тем больше ток потребления и достигает 700-800 мА, но нужно учесть, что цепи с сопротивление меньше 10 кОм встречаются редко и измерение осуществляется за несколько секунд. В устройстве применены два DC-DC преобразователя на MT3608 и MC34063. Первый используется для питания контроллера, напряжение аккумулятора повышается и стабилизируется на уровне 5 вольт, второй преобразователь на 100В, это определено тем, что в основном используется для замеров утечки в электронных устройствах, ну и сделать 500 или 1000В экономичный преобразователь очень пробематично. Сначала была идея оба преобразователя собрать на МТ3608, но после того, как я спалил 8 микросхем, было решено сделать на МС34063. Да и при 500, 1000В пришлось применять более высокоомный делитель и как следствие применение операционных усилителей Rail-To-Rail.

Индикация осуществляется на жидкокристаллический дисплей. Для заряда аккумулятора применен контроллер заряда на TP4056 (отдельная платка 17х20 мм).

Устройство собрано на двухсторонней печатной плате из фольгированного стеклотекстолита, изготовленной по технологии ЛУТ. Не стоит пугаться слова «двухсторонняя».Распечатываются две картинки ПП низ и верх(зеркально). Совмещаются на просвет и скрепляются степлером в виде конверта. Вкладывается заготовка и сначала прогревается с двух сторон утюгом, затем с двух сторон тщательно проглаживается через два стоя писчей бумаги. Отпечатанную заготовку бросаем в емкость с теплой водой примерно на пол часа, затем пальцем под струёй теплой воды убираем остатки бумаги. После травления лудим в сплаве Розе. Сквозные отверстия для проводников выполнены медным луженым проводом диаметром 0.7 мм. Входы прибора выполнены из латунных трубок от старого мультиметра, поэтому можно применять штатные щупы от мультиметров, но желательно сделать самодельные с зажимами типа «крокодил».

Применены SMD детали, резисторы 5%, конденсаторы 10%. Нужно учесть, что это не омметр и не служит для точного измерения сопротивления, хотя точность в диапазоне 1К — 1М достаточно велика. Для повышения достоверности показаний весь диапазон измерения сопротивлений разбит на три. В прошивке применен oversampling. Использованы три делителя напряжения 1;10, 1:100 и 1:1000. Последний диапазон очень растянут, от 10 мОм до 100 мОм и при дискретности АЦП микроконтроллера 10 бит имеет очень крупный шаг, около 90 кОм. К тому же пришлось применить цепи защиты входом микроконтроллера и они вносят погрешность на двух верхних диапазонах. Ниже вы видите рисунки с результатами замеров.

Может кто-то захочет усовершенствовать прибор или более точно откалибровать, поэтому я прикладываю исходники. При калибровке подключаем точный резистор не хуже 1%, например 47 кОм и подбираем коэффициент для диапазона 10-100 кОм в строке:

Шкала от 10 до 100 мОм очень не линейна, вначале показания занижаются kx2, а в конце диапазона завышаются kx1, поэтому подбираются два коэффициента аналогично, но резистор ставим 20 мОм, затем 47 мОм и затем 91 мОм:

С наилучшими пожеланиями, Самоделкин и Ю.Градов.

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Современные мегаомметры

В настоящее время наряду с традиционными, но все еще работоспособными и надежными мегаомметрами, используются электронные аналоговые и цифровые приборы. Они имеют источники тока, это аккумуляторы или гальванические батареи. Использование цифрового табло позволяет более точно проводить измерения и фиксировать их. Многие модели оснащаются немало важными функциями такими как, например: автоматическое определение коэффициентов абсорбции и поляризации. Кроме этого, для большего удобства эксплуатации они конструируются с возможностью подсветки экрана, и сохранения измеренных показаний в память прибора с последующей передачей на компьютер, для отслеживания динамики измерений.

Например, цифровой мегаомметр ЦС202-2 может фиксировать в своей памяти до 10 последних измерений. Кроме измерения изоляции, им можно автоматически выполнить определение коэффициента абсорбции. Диапазон замера этим прибором равен от 0 до 200 ГОм.

Сделать мегаомметр своими руками

Простой миллиомметр

В практике радиолюбителя приходится встречаться с необходимостью измерения низкоомных сопротивлений (до 1 Ом). Решить эту задачу и предназначен простой миллиомметр. Этим устройством можно с достаточной для радиолюбителя точностью измерять сопротивления от 0,0001 до 1 Ома. При измерении малых сопротивлений с помощью цифровых мультиметров последовательно с измеряемым сопротивлением, назовём его Rx, неизбежно включено сопротивление соединительных проводов, переходное сопротивление входных клемм или гнёзд, контактов переключателя и т.п. Это сопротивление (Rпр.) находится в пределах 0,1…0,4 Ом. Вследствие вышеуказанных причин, реально измеренное сопротивление будет больше Rx на некоторую величину (Rx+Rпр.). Погрешность может доходить до 50 % при измерении очень малых сопротивлений. Для больших сопротивлений эта ошибка невелика, и её можно не учитывать. Из изложенного понятно, что надо исключить влияние соединительных проводов и т.п. на результат измерения очень малых сопротивлений. Существует метод измерения низкоомных сопротивлений по 4-зажимной схеме на постоянном токе. Применение данного метода полностью исключает влияние соединительных проводов на результат измерения малых сопротивлений. Этот метод используется в данном миллиомметре. Кратко рассмотрим суть метода измерения по 4-зажимной схеме.

На рис.1 (слева) приведена схема измерения сопротивления по 2-зажимной схеме. Красным цветом показан путь измерительного тока. Как видим, ток протекает и через измеряемый резистор и через сопротивление проводов (Rпр) мультиметра, что вносит погрешность в результат измерения. Сопротивление вольтметра не оказывает влияния на измерение Rx, так как обладает очень большим (до 10 МОм) внутренним сопротивлением Rвх. На рис.1 (справа) показана 4-зажимная схема измерения. Из схемы понятно, что сопротивление проводов не оказывает влияния на результат измерения, так как включено последовательно с очень большим внутренним сопротивлением вольтметра. Измерительный ток протекает только через резистор Rx.

Вот схема миллиомметра (рис.2).

Источником питания схемы является батарея с напряжением 9 В. Выключателем SB напряжение от батареи подаётся на микросхему стабилизатора напряжения типа 7806. Конденсатор С1 служит для подавления скачков напряжения. Резисторы R1, VR2 необходимы для установки выходного напряжения микросхемы в пределах 6 В. Потенциометром VR2 устанавливается точная величина выходного напряжения величиной 6В. Потенциометром VR3 устанавливается выходной ток, протекающий через измеряемый резистор Rx равный 100мА (0,1 А). Поскольку резистор VR3 имеет относительно большое сопротивление по сравнению с измеряемым Rx, то погрешность, возникающая при этом вследствие наличия сопротивлений Rx (от 1 мОм до 1 Ом ), будет оказывать влияние на величину тока 100мА в пределах не более 2%.

Конструкция миллиомметра

Внешний вид и вид на монтаж деталей миллиомметра показан на фото 1, 2 и 3. Монтаж деталей выполнен навесным способом, микросхема на радиатор не устанавливалась. В качестве потенциометров VR2, VR3 использованы многооборотные резисторы для более точной установки напряжения и тока. Корпус прибора пластмассовый, размеры 11*6*4 см. Клеммы К1 иК2 металлические. Выключатель питания типа МТ-1.

Подготовка к измерению сопротивления

Подсоединить щупы цифрового вольтметра к клеммам К1 и К2. Подать напряжение от источника питания на схему, включив выключатель SB. Потенциометром VR2 установить выходное напряжение величиной 6 В при неподключённом резисторе Rx. Далее, отключив SB, переключаем мультиметр на измерение тока (щупы остаются на прежнем месте), включаем SB и потенциометром VR3 устанавливаем величину выходного тока 0,1А.

Проведение измерений

Для начала возьмём несколько резисторов известной величины (0,1; 0,2; 0,5 Ом) и измерим их сопротивление, чтобы убедиться в работоспособности миллиомметра.

Не включая питание под клеммы К1 и К2, зажимаем выводы измеряемого сопротивления. Щупы цифрового вольтметра устанавливаем в гнёзда клемм К1 и К2, а предел измерения на отметку 200мВ. Включаем питание и считываем показания прибора.

Допустим, величина измеренного напряжения 22,3 мВ. Ток ранее был установлен 100мА. Делим напряжение на ток и получаем искомое сопротивление. В нашем случае: Rx=22,3: 100= 0,223 Ом. Конечно, принято делить вольты на амперы, чтобы получить Омы, но так удобнее, не надо переводить мВ и мА в вольты и амперы. Точно также измеряем другие эталонные резисторы. Но всё-таки вспомним, что 1 В-1000мВ; 100мВ-0,1В; 10мВ-0,01В; 1мВ-0,001В; 1А-1000мА; 100мА-0,1А. В моём мультиметре наименьший предел измерения — 200мВ, цена деления — 0,1 мВ. Входное сопротивление — около 10 МОм. То есть теоретически можно измерить сопротивление величиной 0,001 Ом (1мОм). Вольтметры с низким входным сопротивлением для наших измерений не годятся. Итак, мы определили, что проведенные измерения дали реальный результат. Теперь переходим к измерению неизвестного сопротивления. В качестве неизвестных сопротивлений будем использовать шунты из разобранных авометров. При измерении сопротивления самого большого шунта падение напряжения составило 0,5 мВ, ток 100 мА.

Величина сопротивления шунта, рассчитанная по закону Ома, получилась 0,005 Ом. Сопротивление малого шунта, измеренного миллиомметром, равно 0,212 Ом (падение напряжения — 21,2 мВ). Практическое применение миллиомметр может найти при подборе шунтов для зарядных устройств, измерении сопротивлений в оконечных каскадах усилителей низкой частоты и других устройств, где необходимо измерение малых сопротивлений (переходное сопротивление контактов выключателей, реле и др.). Измерение низкоомных сопротивлений можно производить и при токах более 0,1 А. Для этого необходимо собрать стабилизатор тока на соответствующий ток. Схемы стабилизаторов приведены на рис.3.

Стабилизатор включается в схему вместо потенциометра VR3. Конечно, это повлечёт за собой установку микросхемы и транзистора на радиаторы соответствующего размера, а также к увеличению размеров прибора. Сопротивления менее 1мОм (1000 мкОм) измеряют с помощью микроомметров. Измерительный ток может быть величиной до 150 А. Напряжение большой роли не играет. Если необходимо изготовить шунт для зарядного устройства, а нихрома, константана, манганина нет, то можно воспользоваться шпилькой подходящего диаметра, как показано на фото 9.

Материал шпильки — сталь, бронза, медь и т.п. Передвигая один из контактов по шпильке добиваются нужного сопротивления шунта. Расчёт сопротивления шунта несложен. Будут вопросы — обсудим.

Мегаомметр принцип работы и его схема

Работу c мегаомметром рассмотрим на примере самого распространенного прибора с маркировкой ЭС0202/2Г. Прибор произведенный еще в советское время, на Уманском приборостроительном заводе, мегаомметр получил распространение по территории всего Советского Союза и успешно работает в настоящее время. Надежность, неприхотливость, а что самое важное, точность измерений зарекомендовали этот прибор с положительной стороны. В России прибор под этой маркировкой производится в Белгороде и на многих других приборостроительных заводах.

Прибор предназначен для проведения измерений с большими величинами сопротивлений, и рекомендуется для проверки высоковольтного оборудования, рассчитанного на большую мощность, а также для силовых кабелей большого сечения или раскинутых на значительное расстояние.


Рис №1: Внешний вид мегаомметра

Мегаоомметр этого типа относится к индукторным устройствам, работает за счет встроенного в конструкцию генератора, что позволяет прибору работать без постороннего источника питания, и без аккумуляторных батарей.

Принцип работы построен на использовании принципиальной схемы логарифмического измерительного устройства отношений. В измерительном процессе задействованы: электромеханический генератор напряжения, преобразователь и электронный измеритель.

Для работы рекомендуется использовать прерывистый режим, в котором 1 минута отводится на измерение, 2 минуты – пауза. При первом ознакомлении прибором внимательно изучите мегаомметр и инструкцию по эксплуатации.


Рис №2. Принципиальная схема мегаомметра ЭС0202/2Г

Мегаомметр сопротивлений. Новые цифровые мегаомметры для измерение больших сопротивлений

Мегаомметр – прибор для измерения сопротивления изоляции

Мегаомметр — это измерительный прибор, используемый для измерения сопротивления изоляции электрической системы. В отличие от обычного омметра, данное устройство позволяет измерить относительно высокое напряжение в диапазоне 100, 500, 1000 или 2500 вольт. Основными элементами в конструкции мегомметра являются отклоняющая катушка, управляющая катушка и магниты.

Как устроен мегаомметр?

Современные приборы основаны на прочном влагозащищенном пластиковом корпусе. Управляющая и отклоняющая катушки расположены под прямым углом друг к другу и параллельно подключены к источнику питания. Они сохраняют свою полярность во время изменения, создавая крутящий момент в противоположном направлении. Магниты в составе мегаомметра создают магнитное поле, используемое для отклонения указателя.

Принцип работы электронного мегаомметра

Электрический мегаомметр измеряет сопротивление изоляции при вращении кривошипа. Для тестирования диапазона до 440 В для оборудования достаточно 550 В постоянного тока. Катушка тока или отклоняющая катушка соединены последовательно и позволяют электрическому току течь через проверяемую цепь. Управляющая и отклоняющая катушки имеют резистор ограничения тока, соединенный с ними последовательно, чтобы защитить внешнюю цепь от повреждений, вызванных низким сопротивлением.

Электронный мегаомметр измеряет напряжение на основе электромагнитной индукции. Значение сопротивления на экране увеличивается с ростом напряжения во внешней цепи, а также уменьшается с увеличением тока. В то время как проверяемая электрическая цепь разомкнута, крутящий момент, вызванный катушкой напряжения, является максимальным, а указатель отклонения показывает бесконечность. Это означает, что в цепи нет короткого замыкания, а сопротивление в цепи находится на максимальном значении. В случае короткого замыкания указатель отклонения показывает «ноль».

Типы мегомметров

Существует два типа мегомметров:

  • ручной тип;
  • электронный (цифровой мегаомметр).

Мегаомметры с ручным управлением являются устаревшей версией оборудования, вместо них практически повсеместно используются новые мегаомметры с цифровым дисплеем. У ручных моделей аналоговый дисплей расположен на передней панели тестера. Ручной кривошип используется для генерации напряжения, которое поступает через электрическую систему.

Принцип измерения сопровтивлений

Электронный мегамметр является более современной разновидностью прибора. Цифровой дисплей показывает значение сопротивления изоляции в цифровом виде. У прибора есть два провода, которые используются для подключения к электрической системе. Переключатели используются для выбора диапазонов электрических параметров. Индикаторы служат для обозначения различных состояний электрических параметров. Сопротивление мегаомметром электронного типа отображается достаточно точно. Прибор может использоваться для работы в любых местах, в том числе в стесненных условиях.

В компании «ПроТестер» вы можете купить мегаомметры от проверенных производителей. В наличии представлены измерительные приборы марки Benetech, которые отличаются широким функционалом, обладая цифровой и аналоговой шкалой, а также функцией таймера тестирования и расчёта PI / DAR.

Для заказа оформите заявку на сайте или свяжитесь с менеджером по телефону. Доставка осуществляется по всей территории Украины!

Как пользоваться мегаомметром » сайт для электриков

Современные мегаомметры

В настоящее время наряду с традиционными, но все еще работоспособными и надежными мегаомметрами, используются электронные аналоговые и цифровые приборы. Они имеют источники тока, это аккумуляторы или гальванические батареи. Использование цифрового табло позволяет более точно проводить измерения и фиксировать их. Многие модели оснащаются немало важными функциями такими как, например: автоматическое определение коэффициентов абсорбции и поляризации. Кроме этого, для большего удобства эксплуатации они конструируются с возможностью подсветки экрана, и сохранения измеренных показаний в память прибора с последующей передачей на компьютер, для отслеживания динамики измерений.

Например, цифровой мегаомметр ЦС202-2 может фиксировать в своей памяти до 10 последних измерений. Кроме измерения изоляции, им можно автоматически выполнить определение коэффициента абсорбции. Диапазон замера этим прибором равен от 0 до 200 ГОм.

Еще материалы по теме:

Вольтметр. Устройство, принцип работы, виды и характеристики Веерное отключение электричества – что это такое? Что такое диммер? Принцип действия и устройство Что такое энергоаудит, его основные направления и задачи

Назначение и принцип работы

Мегаомметр – измерительный прибор, предназначенный для измерения сопротивления изоляции проводов и других токоведущих частей и элементов схемы. Его чувствительность достаточна, чтобы указать, на каком участке линии изоляция проводов (либо клемм) состарилась настолько, что она может пробиться под действием высокого напряжения. Пробой изоляции в сетях и электроцепях высокого напряжения – источник шагового напряжения, ток которого утекает в землю, и возможного пожара.

Кроме измерительной головки и источника питания, в состав мегаомметра входят переключатель диапазонов измеряемого сопротивления и добавочные резисторы, которые и устанавливают этот предел. Для подключения прибора нужны клеммы, через которые тот подсоединяется к измеряемой цепи или линии посредством щупов с изолированными друг от друга проводами. Для надёжности подключения концы щупов, подсоединяемые к замеряемой цепи, оснащены «крокодилами», отдалённо напоминающими прищепку. Использование «крокодила» даёт возможность установить надёжный электрический контакт. Для питания, без которого сопротивление замеряемой среды не измерить, применяют либо отдельный сетевой адаптер, либо батарейку или аккумулятор. Он, в свою очередь, выдаёт напряжение, берущееся в расчёт сопротивления.

В отличие от (кило) омметров, где подаваемое на замеряемую цепь напряжение не превышает одного или нескольких вольт, эта величина в мегаомметрах задаётся в пределах 50-5000 В, что вынуждает замерщиков применять диэлектрические перчатки, резиновый ковёр и обувь с такой же подошвой, и надёжно изолированный инструмент. Принцип действия мегаомметра, как и его собрата – омметра, основан на применении закона Ома, которым руководствуются все электрики и энергетики. Согласно этому закону, зная напряжение (или ЭДС источника питания) и измерив ток утечки, возможно определить действующее в данный момент сопротивление среды, через которую этот ток и проходит. До проведения измерений участок линии или цепи, на котором замеряется сопротивление, отключают от общей схемы.

По результатам измерения вычисляется действующее значение электрической прочности (в вольтах на метр толщины изолятора, но используют дольно-кратную единицу – киловольты на миллиметр слоя диэлектрика). Существует приблизительный норматив на минимальное количество мегаом, в который должен вписываться любой из проверяемых на «пробойность» электроизоляторов. Например, материал платы кинескопа – текстолит, в ныне устаревших телевизорах не обладал объёмным сопротивлением менее, чем 100 мегаом на миллиметр толщины (между печатными дорожками), так как на электроды кинескопа подавалось напряжение от 4 до 25 киловольт.

Ток утечки должен быть таким, чтобы им можно было пренебречь, то есть на порядок меньшим, чем его рабочее значение. Однако ГОСТ 183-74 не диктует более чётких значений объёмного и поверхностного значений сопротивления диэлектрика – конкретные требования к нему вычисляются инженерами-конструкторами ещё на этапе системо- и схемотехнического проектирования того или иного устройства. Если общее сопротивление проверяемого участка линии или цепи оказалось меньше этого значения – изолятор необходимо заменить, пока утечка тока не стала заметной либо не привела к пробою изолятора и замыканию.

Принцип измерения сопротивления изоляции мегомметром

Принцип измерения величины сопротивления изоляции сам по себе несложен. Используется закон Ома – замеряется сила протекающего между двумя щупами тока при известном поданном на них напряжении. Отношение величины напряжения к силе тока как раз и даст искомый результат. Этот принцип применяется практически во всех контрольно-измерительных приборах, предназначенных для измерения сопротивлений.

R = U/ .

Но для того чтобы вызвать и «засечь» электрический ток в цепи при очень больших показателях сопротивления (а у изоляции по умолчанию они должны быть такими), требуется подавать и весьма внушительное напряжение. Именно это и реализовано в мегомметрах.

Независимо от типа и модели прибора, он в обязательном порядке имеет:

  1. Высоковольтный источник постоянного напряжения.
  2. Измерительный блок, оценивающий силу проходящего по цепи электрического тока.
  3. Устройство индикации показаний – стрелочное со шкалами, или в виде цифрового дисплея с показом абсолютных значений.
  4. Набор измерительных проводов со щупами, посредством которых высокое напряжение передается на тестируемый объект.

На сегодняшний день существует два основных типа подобных приборов.

Еще не столь давно безраздельно господствовали мегомметры со стрелочной шкалой и встроенным индуктором – динамомашиной. Вращением специальной рукоятки генерируется высокое напряжение, которое после необходимого преобразования подаётся на щупы. Частота вращения – примерно 120÷140 оборотов в минуту (2 оборота в секунду). О выходе на установленное калиброванное высокое напряжение, как правило, извещает загоревшийся индикатор, расположенный на передней панели.

Опасность повышенного напряжения устройства

В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора

Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.

В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.

Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.

Ход измерения

По причине использования в приборе высоковольтного источника питания и связанной с ним опасности для пользователя рекомендуется обязательное соблюдение следующих шагов. В первую очередь проверяемый проводник отсоединяется от остальной электрической цепи. А перед этим цепь обесточивается тем или иным способом, то есть рубильником, автоматическим выключателем или выкручиванием пробок, если они еще применяются.

Проверка изоляции всегда связана с контролем токов утечки на землю. Поэтому в месте использования мегаомметра необходимо эффективное заземление. К нему присоединяется многожильный провод с поперечником 1,5–2 кв. мм. Он предназначен для обнуления емкости, присущей проводам и кабелям. Для этого можно использовать дополнительный щуп от мультиметра или тестера, если таковой имеется. Либо изготовить из подручных средств его аналог, удобный для пользования.

Перед проверкой удлинителей их вилки извлекаются из розеток (как и для проверки электропроводки розеток). А проводники и кабели осветительных цепей проверяются после извлечения ламп из патронов. То же самое относится и к прочим электроприборам, изоляция которых проверяется. Они не должны быть частью электрической цепи при работе мегаомметра.


Отключаем проверяемый провод от остальной части электросети

Инструкция по эксплуатации

Проверка сопротивления изоляции производится на обесточенном оборудовании или кабельной линии, электропроводке. Помните о том, что устройство генерирует высокое напряжение и при нарушении мер безопасности по использованию мегаомметра возможен электротравматизм, т.к. замер изоляции конденсатора или кабельной линии большой протяженности может стать причиной накопления опасного заряда. Поэтому испытание производится бригадой из двух человек, имеющих представление об опасности электрического тока и получивших допуск по ТБ. Во время испытания объекта, рядом не должны находиться посторонние лица. Помним про высокое напряжение.

Прибор при каждом использовании осматривается на целостность, на отсутствие сколов и поврежденной изоляции на измерительных щупах. Производится пробное тестирование путем испытания с разведенными щупами и замкнутыми. Если испытания производят механическим устройством, то нужно разместить его на горизонтальной ровной поверхности, чтобы не было погрешности в измерениях. При измерении сопротивления изоляции мегаомметром старого образца нужно вращать ручку генератора с постоянной частотой, примерно 120-140 оборотов в минуту.

Если измерять сопротивление относительно корпуса или земли, задействуют два щупа. Когда производят испытание жил кабеля относительно друг друга, нужно использовать клемму «Э» мегаомметра и экран кабеля чтобы компенсировать токи утечки.

Сопротивление изоляции не имеет постоянного значения и во многом зависит от внешних факторов, поэтому может варьировать во время измерения. Проверку производят минимум 60 секунд, начиная с 15 секунды фиксируют показания.

Для бытовых сетей испытания производятся напряжением 500 вольт. Промышленные сети и устройства испытываются напряжением в диапазоне 1000-2000 вольт. Каким именно пределом измерений пользоваться, нужно узнать в инструкции по эксплуатации. Минимально допустимое значение сопротивления для сетей до 1000 вольт — 0.5 МОм. Для промышленных устройств не меньше — 1МОм.

Что касается самой технологии измерения, использовать мегаомметр нужно по описанной ниже методике. Для примера мы взяли ситуацию с замером изоляции в ЩС (щит силовой). Итак, порядок действий следующий:

Выводим людей из проверяемой части электроустановки. Предупреждаем об опасности, вывешиваем предупредительные плакаты.
Снимаем напряжение, обесточиваем полностью щит, вводной кабель, принимаем меры от ошибочной подачи напряжения. Вывешиваем плакат — НЕ ВКЛЮЧАТЬ, РАБОТАЮТ ЛЮДИ.
Проверяем отсутствие напряжения. Предварительно заземлив выводы испытуемого объекта, устанавливаем измерительные щупы, как показано на схеме подключения мегаомметра, а также снимаем заземление. Данная процедура проводится при каждом новом замере, поскольку близлежащие элементы могут накапливать заряд, вносить погрешность в показания и представлять опасность для жизни. Установка и снятие щупов производится за изолированные ручки в резиновых перчатках

Обращаем ваше внимание на то, что изолирующий слой кабеля перед проверкой сопротивления нужно очистить от пыли и грязи.
Проверяем изоляцию вводного кабеля между фазами А-В, В-С, С-А, А-PEN, B-PEN, C-PEN. Результаты заносим в протокол измерений.
Отключаем все автоматы, УЗО, отключаем лампы и светильники освещения, отсоединяем нулевые провода от нулевой клеммы.
Производим замер каждой линии между фазой и N, фазой и PE, N и PE

Результаты вносим в протокол измерений.
В случае обнаружения дефекта разбираем измеряемую часть на составные элементы, ищем неисправность и устраняем.

По окончании испытания переносным заземлением снимаем остаточный заряд с объекта, путем кратковременного замыкания, и самого измерительного прибора, разряжая щупы между собой. Вот по такой инструкции необходимо пользоваться мегаомметром при замерах сопротивления изоляции кабельных и других линий. Чтобы вам было более понятна информация, ниже мы предоставили видео, в которых наглядно демонстрируется порядок измерений при работе с определенными моделями приборов.

Как замерить сопротивление изоляции мегаомметром ЭСО

Первым делом необходимо правильно подключить измерительные провода к самому устройству. На данном этапе могут возникнуть вопросы. Это происходит из за того, что на панели подключения есть четыре отверстия (хотя встречается и три). Рассмотрим их подробнее слева-направо:

  • “Минус” – сюда одинарный конец измерительного провода
  • “Rx” – сюда второй конец двойного провода
  • Данное отверстие в описываемой модели мной не опознано. Однако в ЭСО210/2 сюда перебрасывается провод с Rx при измерениях на пределе 0-5 МОм (отверстие подписано 0,1Rx).
  • “Э” – экран; сюда вставляется штырь двойного провода. А нужен он для устранения влияния тока утечки на измерения. Используется при измерении между фазами.

Подача напряжения осуществляется при нажатии кнопки “сеть”. Провод питания подключается в нижней части прибора. Напряжение питания составляет 220В. Берем от розетки или, если она далеко, от удлинителя. Порой кроме компактного мегаомметра надо брать с собой на объект и удлинитель. Хотя, можно и одолжить у местных.

Перед началом измерений надо проверить исправность измерительных проводов, необходимо проверить их целостность. Для этого надо подключить провода и далее:

  • При соединенных проводах сопротивление изоляции должно быть равно нулю
  • При разведенных проводах значение Rx должно быть максимально возможным (говорим, бесконечность – сопротивление воздуха бесконечно, проводимость равна нулю)
  • Если бесконечность при замкнутых, значит провод обломан и надо его заменить
  • Если ноль при разведенных, значит либо они касаются, либо внутри прибора пробой или другая неисправность (не встречал такую ситуацию)

Лично я испытывал следующее оборудование мегаомметром: кабель (жилы, оболочка), турбогенератор (статор, ротор, подстуловая, патрубков), трансформатор, шины, электродвигатель, релейные цепи, трансформаторы тока и напряжения.

Таблица пределов измерения мегаомметров ЭСО

Разные модели мегаомметров ЭСО отличаются:

  • регулируемыми пределами измерений (разные шкалы для разных величин измеряемого сопротивления изоляции )
  • подаваемым напряжением постоянного тока (100, 250, 500, 1000, 2500 В)
  • а также способом подачи напряжения (либо просто нажатие кнопки, либо вращение ручки генератора со скоростью 120-144 об/мин, о чем говорит наличие буквы Г в названии модели, ну и ручки собственно).

Характеристики мегаомметров ЭСО210

Основными элементами прибора являются: генератор или трансформатор, преобразователь и электронный измеритель. Электронный измеритель в моделях ЭСО210/1(Г) и ЭСО210/3(Г) выполнен на двух логарифмических усилителях. А в моделях ЭСО210/2(Г) – на двух логарифмических усилителях и повторителе напряжения на операционном усилителе – но эта информация, скорее всего, мало кому пригодится.

Также стоит отметить, что при использовании прибора рекомендуется использовать прерывистый характер работы – одну минуту измерение, две минуты перерыв.

Класс точности прибора 2,5, относительная погрешность 15% от измерененного сопротивления изоляции. То есть намерили 100МОм, а на самом деле это будет сто плюс минус пятнадцать мегаомм. Но и это не точно, так как существуют и другие влияющие факторы – это подробно описано в руководстве мегаомметра по экспуатации…

Как не запутаться в шкалах стрелочного мегаомметра ЭСО210

При работе с данным прибором чаще всего путаются какие концы куда вставлять, а также не сразу ориентируются на какую шкалу смотреть. Но с опытом глаз наметывается и трудностей не возникает.

Шкалы подписаны справа римскими цифрами I и II. Также и на крутилке на фото снизу синей (аналогичный цвет как у шкал) видно, какой предел мы выбираем – первый, второй или второй умножить на десять.

У первой шкалы нуль справа, у второй и второй умножить на десять нули слева. Не путайте никогда. Нижняя черная шкала, как легко догадаться используется при измерении напряжения, и судя по надписи – как постоянного, так и переменного.

Возможно неопытного юнца испугает логарифмическая шкала, но бояться не стоит. Главное не торопиться и перепроверить несколько раз перед записью в протокол.

Например, первая шкала идет справа налево

К этому привыкаешь) На второй шкале максимум десять в четвертой – это 10 000 МОм или же 10 ГОм.

А на “второй умножить на десять” – 100 000 МОм или 100 ГОм.

Некоторые пишут, но никогда не говорят, не ЭСО, а ЭС0. Расшифровки на просторах интернета я не нашел, но кажется мне, что правильно писать букву о, а не ноль. Если вдруг знаете аргументированный ответ как правильно, отпишитесь на почту.

{SOURCE}

Проверяем электропроводку

Если в квартире или частном доме электропроводка проверяется самостоятельно, рекомендуется такой порядок выполнения измерения.

  1. В первую очередь отключается все то, что использует разъемные соединения (о вилках и лампах уже упоминалось выше).
  2. Затем к жиле присоединяется заземление.
  3. По данным таблицы выбирается диапазон, в котором находится ожидаемая величина сопротивления, и на него настраивается прибор.
  4. На жиле (линии) проверяется отсутствие напряжения (использовать для этого мультиметр или индикатор напряжения, решает пользователь).
  5. В зависимости от наличия экрана используются две или три клеммы с соответствующими разновидностями щупов.
  6. Заземление снимается.
  7. В зависимости от модели (с полупроводниковым генератором она или с электромеханическим), нажатием на кнопку или вращением рукоятки подается напряжение для тестирования проводника.
  8. Полученный результат фиксируем удобным способом.
  9. Прикасаемся к жиле заземлением для снятия остаточного напряжения и отсоединяем щупы.
  10.  Соединяем щупы накоротко, и после этого измерение завершено.

Полученные результаты сравниваются с табличными. Если получились значения сопротивления изоляции меньше рекомендуемых, это значит, что либо изношена проводка, либо повреждена изоляция. Старую проводку лучше заменить. В новой стоит попытаться найти причину ее малого сопротивления.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

  • Аналоговые (электромеханические) – мегаомметры старого образца. Аналоговый мегаомметр
  • Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Упрощенная схема электромеханического мегаомметра

Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
На отображаемые данные влияет равномерность вращения динамо-машины.
Часто в процессе измерения приходится задействовать усилия двух человек

Причем один из них выполняет сугубо физическую работу, – вращает ручку генератора.
Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Современная аналоговая модель мегаомметра Ф4102

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Подобные мегомметры без сколь-нибудь принципиальных изменений выпускаются уже много десятков лет. И, надо сказать, не торопятся «уходить со сцены».

Подобные модели довольно просты в устройстве, несложны в управлении. Как правило, имеют весьма солидные габариты и вес. Но зато – они полностью автономны, то есть не требуют ни элементов питания, ни подключения к сети

Идеальное решение для любых «полевых» условий, что бывает особенно важно во время ведения строительства

Как бы то ни было, мегомметры такого типа все еще выпускаются промышленностью, находят спрос. А многие мастера-электрики и вовсе предпочитают исключительно их, несмотря на появление более компактных и «навороченных» приборов.

Другой тип мегомметров – это электронные приборы, которые обычно намного компактнее и легче. Высокое напряжение у них вырабатывается в специальном электронном преобразователе от встроенного аккумулятора, сменных источников питания или от блока питания, требующего подключения к сети. Многие модели позволяют выбрать любой из этих вариантов питания. Но в любом случае прослеживается зависимость от наличия источника – полной автономности в работе нет.

Какие меры безопасности должны соблюдаться при работе с мегомметром

Все, казалось бы, чрезвычайно просто. Но, оказывается, такие приборы относятся исключительно к категории профессиональных. И далеко не все работники могут быть допущены к их эксплуатации – требуется определенное обучение и получение соответствующего допуска – не ниже третьей группы электробезопасности.

Автор статьи в данном случае ни в коем случае не рекомендует, как обычно принято на строительных сайтах, выполнять измерения своими руками. Но если уж какой-то хозяин дома или квартиры возьмёт на себя смелость и ответственность за выполнение самостоятельных измерений – он должен по меньшей мере максимально соблюдать требования безопасности выполнения работ.

Сам прибор не должен иметь никаких механических повреждений корпуса

Особое внимание — целостности изоляции измерительных проводов, исправности щупов, зажимов-«крокодилов», штыревых контактов для подключения к мегомметру.
Любой тестируемый объект или линия в обязательном порядке обесточивается. Все автоматы переводятся в положение «выключено» или, в старых распределительных щитах, выкручиваются плавкие предохранители – пробки

В некоторых случаях требуется временное отсоединение проводов от выходных клемм автоматических выключателей.

Перед тестированием сопротивления изоляции проводится полное обесточивание объекта

На намеренно отключенное состояние сети желательно акцентировать внимание установкой таблички, например, «Не включать! Идут работы». Так, чтобы никто из домашних или помощников случайно не включил автоматы во время тестирования

От сети отключаются все приборы. Вилки вынимаются их розеток. Лампочки выкручиваются из патронов светильников

Особое внимание – приборам с точной электроникой. Подаваемое в линию высокое напряжение может запросто их «убить»

Изо всех розеток вытаскиваются вилки. Из светильников (не забываем и про точечные) выкручиваются (вынимаются) лампы.

Готовится к работе так называемое переносное заземление. Мастера пользуются приспособлением заводского изготовления, но вполне можно сделать вполне рабочее устройство и самому.

Переносное заземление заводского производства. Нечто подобное делается и собственными руками.

Оно может представлять собой отрезок медного многожильного провода требуемой длины, сечением не менее 1,5 мм². Один его конец зачищается, и может быть оснащен клеммой или зажимом-крокодилом с расчетом на подключение к шине заземления. Второй конец, также зачищенный, необходимо укрепить на диэлектрической штанге. Хорошо, если найдется пластиковый стержень нужной длины. Если нет, то подойдет и сухая деревянная рейка, на краю которой и крепится зачищенный конец провода, например, несколькими витками изоленты. Место на штанге, за которое придется браться руками, тоже можно «одеть» в пару слоев изоленты. А длина штанги выбирается такой, чтобы было удобно касаться концов тестируемых проводов с безопасного расстояния.

После каждого замера рекомендуется снимать остаточное напряжение в проверяемых проводниках касанием этого переносного заземления. Кстати, при тестировании линий значительной протяженности заряд может оставаться в них нешуточный, способный нанести тяжелую электротравму.

Работы по замеру сопротивления изоляции желательно проводить в диэлектрических перчатках. Многие это игнорируют и, наверное, напрасно. В ходе замеров, особенно по неопытности, ничего не стоит коснуться щупа или токоведущей детали, скажем, тыльной стороной ладони. А работать-то приходится с напряжениями, порой достигающими и 2500 вольт! Не шутка!
Необходимо правильно обращаться со щупами

Если обратить внимание, то на каждом из них на рукоятке имеется бортик, своеобразная гарда. Это не столько для удобства, сколько для обеспечения безопасности

Тем самым задается граница безопасной для пальцев зоны, пересекать которую при проведении замеров – запрещается.

Гарды на рукоятках щупов четко ограничивают расположение пальцев оператора. Ближе к оголённой части – становится опасным.

После каждого замера должно сниматься остаточное напряжение и в щупах мегомметра. Для этого их оголенные концы просто замыкают между собой. Надо сказать, что современные приборы часто оснащаются функцией автоматического разряда после снятия каждого показания. Но лучше перестраховаться, а у многих электриков такое замыкание контактов после каждого замера – просто вошло в привычку.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов

Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объектУровень напряжения (В)Минимальное сопротивление изоляции (МОм)
Проверка электропроводки1000,00,5>
Бытовая электроплита1000,01,0>
РУ, Электрические щиты, линии электропередач1000,0-2500,01,0>
Электрооборудование с питанием до 50,0 вольт100,00,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с номинальным напряжением до 100,0 вольт250,00,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт500,0-1000,00,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В2500,00,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Измерители сопротивления изоляции, мегаомметры

Мегаомметры бренда МЕГЕОН

Мегаомметр — это прибор для проведения измерений сопротивления изоляции проводов и кабелей.

Принцип действия мегаомметра основывается на использовании источника постоянного высокого напряжения, генерирующего это самое напряжение в цепи, тем самым проверяя изоляцию.

Мегаомметром испытывают обмотки электродвигателей, силовые кабельные линии, обмотки турбогенераторов и прочее электрооборудование. В общем, везде где есть изоляция, применяют мегаомметр.

Мегаомметр используется для измерения большой величины сопротивления, электрических цепей, отключенных от питания, а также диэлектрической изоляции, используемой для кабелей, проводов, электродвигателей, трансформаторов и других электроустановок.

Мегаомметр любого типа содержит источник постоянного напряжения. С его помощью в созданной измерительной цепи он генерирует высокое напряжение, которым и проверяется состояние изоляции кабеля.

Мегаомметр МЕГЕОН 13950

Измеритель сопротивления изоляции МЕГЕОН 13950 представляет собой портативный контрольно-измерительный прибор для проверки сопротивления изоляции с использованием высоких значений испытательных напряжений оснащен USB интерфейсом.

Мегаомметр внесен в государственный реестр СИ, под номером 74507-19, срок периодической поверки составляет два года.

Особенности мегаомметра МЕГЕОН 13950:

  • Высокая надежность
  • Длительный срок службы мегаомметра
  • Измерение сопротивления изоляции от 0 до 1000 гОм
  • Переменного и постоянного напряжения от 30 до 600В
  • Изменение измерительного напряжения от 250В до 5500В с шагом 50В/500В
  • Двойная изоляция прибора
  • Функция экранирования для более точного измерения сопротивления изоляции

Мегаомметр МЕГЕОН 13900

Измеритель сопротивления изоляции МЕГЕОН 13900 представляет собой портативный контрольно-измерительный приборы для проверки сопротивления изоляции с использованием высоких значений испытательных напряжений оснащен USB интерфейсом.

Измеритель сопротивления изоляции (мегаомметр) внесен в государственный реестр СИ, под номером 74507-19, срок периодической поверки составляет два года.

Особенности мегаомметра МЕГЕОН 13950:

  • Высокая надежность
  • Длительный срок службы мегаомметра
  • Измерение сопротивления изоляции от 0 до 1000 ГОм
  • Измерение индекса поляризации(PI)
  • Функция непрерывного измерения сопротивления
  • Автоматическое выключение после 10 минут бездействия
  • Двойная изоляция прибора
  • Измерение в течение заранее установленного времени
  • Функция экранирования

Мегаомметр МЕГЕОН 13250

Измеритель сопротивления изоляции МЕГЕОН 13250 представляет собой портативный измерительный прибор для проверки сопротивления изоляции с использованием высоких значений испытательных напряжений.

Измеритель сопротивления изоляции (мегаомметр) внесен в государственный реестр СИ, под номером 74507-19, срок периодической поверки составляет два года.

Особенности мегаомметра МЕГЕОН 13250:

  • Измерение сопротивления изоляции от 0 до 1000 гОм
  • Переменного и постоянного напряжения от 30 до 600В
  • Измерение индекса поляризации(PI)
  • Функция непрерывного измерения сопротивления
  • Автоматическое выключение после 10 минут бездействия
  • Большой дисплей с крупными цифрами и подсветкой
  • Высокая надежность
  • Длительный срок службы мегаомметра

Компактный милиомметр МЕГЕОН 13080

Компактный милиомметр МЕГЕОН 13080 от компании МЕГЕОН представляет собой высокоточный измерительный инструмент с богатым набором дополнительных функций. Благодаря специальному разъему, Вы можете подключить данный омметр к источнику постоянного питания.

Мегаомметр позволяет использовать четырех проводной метод измерения сопротивления (цифровой мост), который в свою очередь обеспечит высокие показатели точности. МЕГЕОН 13080 дает возможность измерять сопротивление нагревательных элементов, различных проводников, а также сопротивление в местах пайки.

Прибором очень просто пользоваться, все элементы управления расположены на фронтальной панели прибора. Стандартный комплект поставки включает в себя ремешок, который позволяет закрепить прибор на плече и не держать его руками во время измерений. Прибор идеально подойдет для измерения сопротивления следующих устройств: контакты силовых резисторов, печатных плат, антенн, кабелей, электрических станков, катушек разгона и другого электрооборудования.

Особенности милиомметра МЕГЕОН 13080:

  • Диапазон измерений 0,01 мОм … 2 кОм
  • Высокая точность
  • Функция автоматического отключения
  • Функция удержания показаний «HOLD»
  • Высокая надежность
  • Длительный срок службы прибора

Мегаомметр МЕГЕОН 13130

МЕГЕОН 13130 представляет собой портативный измеритель сопротивления изоляции бюджетного ценового диапазона. Данная модель, как и другие мегаомметры МЕГЕОН, отличаются высокой надежностью и богатым набором встроенных функций. МЕГЕОН 13130 используется для определения параметров (сопротивления) изоляции, используя при этом высокое испытательное напряжение (до 2500 Вольт). Функция мегаомметра автоматического выбора диапазона, измерение по таймеру и оповещение при обнаружении напряжения в исследуемой сети обеспечивают проведение точных и безопасных измерений.

Мегаомметр оснащен большим ЖК-дисплеем с интегрированной светодиодной подсветкой, что позволяет работать с прибором даже в темное время суток. Кроме функций, характерных для всех приборов данного ценового диапазона, мегаомметр МЕГЕОН 13130 также оснащен функцией автоматической разрядки, что в свою очередь обеспечивает безопасность пользователя при работе с прибором. На дисплей прибора выводится вся необходимая информация — текущие показатели сопротивления, уровень заряда элемента питания. При обнаружении напряжения в исследуемой цепи, прибор оповестит пользователя звуковым сигналом. Стоит отметить, что мегаомметр МЕГЕОН 13130 может работать как от батареек, так и от сетевого адаптера 12 вольт.

Особенности мегаомметра МЕГЕОН 13250:

  • Измерение сопротивления изоляции 0…100 ГОм
  • Переменного и постоянного напряжения от 30 до 600В
  • Отсчет времени измерения сопротивления изоляции
  • Двойная изоляция прибора
  • Функция экранирования для более точного измерения
  • Большой дисплей с крупными цифрами и подсветкой
  • Высокая надежность
  • Длительный срок службы мегаомметра

Измеритель сопротивления изоляции МЕГЕОН 13200 представляет собой портативный прибор для измерения сопротивления изоляции с использованием высоких значений испытательных напряжений ( до 1000 Вольт). Измеритель сопротивления изоляции (мегаомметр) внесен в государственный реестр СИ, под номером 74507-19, срок периодической поверки составляет два года.

Особенности мегаомметра МЕГЕОН 13200:

  • Измерение сопротивления изоляции и напряжения между щупами
  • От 2 до 4 пределов измерения сопротивления с автопереключением
  • Высокая надежность
  • Длительный срок службы мегаомметра
  • Звуковая и визуальная индикация подачи испытательного напряжения
  • Автоматическое выключение
  • Большой ЖК-дисплей с подсветкой

Измерение сопротивления изоляции мегаомметром

Как пользоваться мегаомметром, измерение сопротивления изоляции мегаомметром

 

Все мегаомметры в каталоге. Мегаомметр прибор для измерения сопротивления изоляции кабеля, изоляцию обмотки двигателя, диэлектрических материалов приборов. Современные мегаомметры позволяют вычеслять сразу коэффициент абсорбции и поляризации. Коэффициент абсорбции показывает степень увлажнения изоляции кабелей, трансформаторов, электродвигателей. Коэффициент поляризации показывает степень старения изоляции. Работа мегаомметра основана на измерении протекающего тока, при подаче стабильного высокого напряжения. У цифровых мегаомметров переключение диапазонов и определение единиц измерения производятся автоматически. Мегаомметры с испытательным напряжение которое создает ШИМ преобразователь не могут измерять сопротивления изоляции обмоток двигателя, цепи с высокой индуктивностью, например промышленный магнит.

 

 

При коэффициенте поляризации менее 1 изоляция проводника изношенная необходимо заменить, при значении от 1 до 2 проводник изношенный, но эксплуатация возможна. При значении более 2 эксплуатация проводника разрешена. Коэффициент абсорбции вычисляется измерением скорости заряда абсорбционной емкости изоляции при приложении испытательного напряжения. Если коэффициент абсорбции меньше 1,3 изоляция считается неудовлетворительной, необходимо сушить изоляцию.

 

Для работы с мегаомметром необходимо:

  1. выбрать испытательное напряжение в настройках прибора, чем больше испытательное напряжение чем больше максимальное значение сопротивления;
  2. выбрать время измерения. Из-за нестабильности сопротивления требуется проводить измерения не менее 1 минуты.

 

Клемму «минус», «GUARD», «0 V» необходимо подключать к тому проводнику, который заземлен. Измерения рекомендуется проводить дважды со сменной полярности испытательного напряжения для получения среднего результата. Полярность испытательного напряжения указана на гнёздах мегаомметра. Результаты измерений может выглядеть как на картинке ниже. Минимальное сопротивления изоляции проводки для бытовой сети 0,5 МОм, а для промышленной сети и производственного оборудования 1 МОм. 

 

Для измерения сопротивления изоляции двухжильного кабеля необходимо клеммы плюс и минус мегаомметра подсоединить к проводникам. Если кабель одножильный тогда клеммы плюс и минус мегаомметра подключают к проводнику и экрану соответственно. При измерении сопротивления более 10 ГОм необходимо использовать экранированный измерительный кабель, экран измерительного кабеля подключается в соответствующее гнездо. 

 

Если изоляция кабеля загрязненная и при больших значения сопротивления изоляции более 10 ГОм, для исключения влияния поверхностных токов утечки необходимо использовать схему подключения с тремя измерительными кабелями. Или экраннированным кабелем как у мегаомметра Е6-32, в комплекте не поставляется. К изоляции одного из проводников необходимо намотать колечко из фольги, обжать крокодилом и подключить крокодил к клемме заземления мегаомметра. При измерении сопротивления изоляции обмотки трансформатора, для исключения влияния поверхностных токов утечки так же необходимо использовать схему подключения с тремя измерительными кабелями. Клемма заземления в данном случае подключается к сердечнику трансформатора.

 

Нормы сопротивления изоляции. Измерения необходимо производить при нормальных климатических условиях при температуре 25±10 °С и влажности воздуха не более 80%. Если в кабеле провода без экрана, то сопротивление изоляции измереяется между жилами проводов. Если провода с экраном в виде оплетки или фольги, то тогда сопротивление изоляции измеряется между жилой и экраном. Испытания проводят при отключеных электроустановках. 

Электроустановки

Значение сопротивления,

не менее

Испытательное

напряжение

Указания

до 500 В

более 0,5 Мом

500 В 

Сопротивление изоляции должно быть стабильным 1 минуту

500 … 1000 В

более 1 Мом

1000 В

Сопротивление изоляции должно быть стабильным 1 минуту

 

Все мегаомметры в каталоге. 

Что такое мегомметр?

Мегаомметр, или, как его чаще называют, мегомметр, представляет собой электрический испытательный прибор, предназначенный для измерения чрезвычайно высоких сопротивлений путем создания напряжения постоянного тока (постоянного тока) в диапазоне от 300 до 15 000 вольт. Мегаомметр производит заряд постоянного тока высоким напряжением и малым током, что позволяет измерять сопротивление, обычно встречающееся при испытаниях обмотки электродвигателя или изоляции кабеля. Мегаомметры производят это высокое напряжение с помощью внутренней схемы с питанием от батареи или генератора с ручным управлением.

Проверка электрического оборудования, механизмов или установок на сопротивление обмотки, заземления или изоляции с помощью обычного омметра может быть неточной из-за чрезвычайно высоких сопротивлений, характерных для этих приложений.Сопротивления в этих случаях могут варьироваться от нескольких мегаом до нескольких миллионов мегаом и требуют испытательного напряжения, намного более высокого, чем то, которое используется в меньших омметрах. Мегаомметр использует постоянное напряжение в диапазоне от 300 до 15 000 вольт для точного измерения этих очень высоких значений сопротивления. Эти напряжения подаются при очень низких номинальных токах и, как правило, не опасны для пользователя мегаомметра.

Существует два основных типа мегомметров: вариант с питанием от батареи и тип, в котором используется ручная заводная рукоятка или генератор с приводом от двигателя.Оба варианта мегомметра способны проводить точные измерения сопротивления изоляции установок и оборудования с сопротивлением в несколько тераом (1 000 000 МОм). Мегаомметры с батарейным питанием используют специальную внутреннюю схему для преобразования низкого напряжения батареи в более высокое тестовое напряжение. Эти инструменты, как правило, меньше и легче, чем версии с генератором, и предлагают преимущества одной кнопки, управления одной рукой и выбора нескольких рабочих напряжений.Недостатком мегаомметров с батарейным питанием является короткий срок службы батареи и то, что они обычно производят не более 5000 вольт.

Генераторные мегомметры

полагаются на небольшой внутренний генератор для получения требуемых высоких испытательных напряжений.Эти генераторы обычно управляются вручную с помощью внешней рукоятки, но могут быть оснащены внутренним приводом двигателя. Эти приборы могут производить напряжения в диапазоне от 300 до 15 000 вольт и не требуют замены батареи. Одной из вредных характеристик использования этого типа инструментов является то, что для операции требуются две руки, что требует использования зажимных электродов или помощи второго человека. Кроме того, они, как правило, более громоздкие и обеспечивают одно испытательное напряжение.

При тестировании электрического оборудования всегда следует помнить о высоком напряжении, создаваемом этими приборами.Испытательные напряжения мегаомметра не должны превышать рабочее напряжение испытуемого оборудования со слишком большим запасом, так как это может привести к необратимым повреждениям. Хотя испытательные напряжения подаются при очень малых токах, следует всегда соблюдать осторожность, чтобы не допустить поражения электрическим током при работе с мегомметром.

Что такое мегомметр? | Свобода отопления и воздуха

Что означает, что техник отключил мой компрессор?
Что такое мегомметр?

Меггинг — это хорошо

Прежде всего, вы должны понимать, что «меггирование» или использование мегомметра является необходимым шагом для определения того, правильно ли работает компрессор в вашем кондиционере.Мегаомметр (мегомметр) — это тип омметра, используемый для измерения электрического сопротивления изоляторов. Изоляцию обмоток компрессора необходимо периодически проверять, чтобы определить, проходит ли электричество через изоляцию, окружающую обмотки.

 

Три вида электрического тока

Когда техник измеряет ток, в этом случае он определяет ток заряда емкости. Это тип тока, который начинается с высокого напряжения и падает после того, как изоляция заряжается до полного напряжения.Во-вторых, необходимо определить и измерить ток поглощения. Этот ток возникает из-за накопления влаги или наличия загрязняющих веществ в изоляции. Уровни масла, утечка через клеммные колодки и электрические предохранители или загрязненный хладагент также могут вызвать накопление тока. В-третьих, мегомметр измерит ток проводимости или утечки в изоляции.

Два вида методов

Целью измерения тока является определение исправности компрессора.Коэффициент диэлектрической абсорбции определяется техническим специалистом. Это довольно сложный математический расчет, требующий специальных знаний и навыков. Снимаются 60-секундные показания каждого терминала компрессора относительно земли, а мегаомы снимаются с 30-секундными интервалами. Между каждым чтением вывод на землю шунтируется перемычкой. Затем 60-секундные показания делятся на 30-секундные показания. Это дает расчет, известный как DAR. Коэффициент поглощения от 1,0 до 1,35 является сомнительным диапазоном, указывающим на загрязнение системы.Показание от 1,4 до 1,6 является хорошим показателем.

Индекс поляризации

Также используется индекс поляризации, который требует, чтобы технический специалист «меггил» устройство в течение 10 минут. Общий вывод на компрессоре используется для снятия показаний с помощью мегаомметра. Через 1 минуту снимают показания. По истечении 10 минут проводится еще одно измерение. 10-минутное показание делится на 1-минутное показание и определяется индекс поляризации. Если показания меньше 1.0, компрессор необходимо заменить. Между 1,0 и 2,0 состояние компрессора сомнительно, и необходимо соблюдать процедуры технического обслуживания. Устройство необходимо снова протестировать в течение 48 часов, чтобы определить его состояние и пригодность к использованию. От 2,0 до 4,0 указывает на хорошую работу компрессора.

 

 

ОБ АВТОРЕ

Дон Джонсон — президент компании Freedom Heating and Cooling в Бирмингеме, штат Алабама, которая предлагает домовладельцам инструменты, в том числе: по проблемам ОВиК
«Руководство домовладельца по найму компании по отоплению и кондиционированию воздуха », краткий обзор того, как гарантировать, что вы никогда не пострадаете, наняв неподходящего подрядчика.
«Полное руководство для владельца дома по проектированию системы ОВКВ» , 59-страничная электронная книга, описывающая 9 шагов к созданию полной системы домашнего комфорта. Свяжитесь с ним по телефону 205-444-4444 или подключитесь к Facebook или Google +
.

 

 

 

 

 

Что такое мегаомное или мегомметрическое тестирование?

Что приходит на ум, когда думаешь о прочности проволоки? Многие люди думают только о том, что видно снаружи.Например, как далеко можно тянуть проволоку, прежде чем она сломается, или какую высокую температуру она может выдержать, прежде чем расплавится. А как быть с нарушениями целостности провода, которые не всегда можно обнаружить человеческим глазом? А как насчет «электрической» прочности провода?

Как только изоляция изготовлена, она начинает стареть. Со временем его характеристики ухудшаются, а его способность изолировать проводник снижается. Воздействие на провод суровых условий и экстремальных температур еще больше ускоряет разрушение изоляции.Повреждение изоляции провода во время производства, например надрез кусачками, также может снизить целостность изоляции.

Простейшим тестом, используемым для обнаружения пробоя в изоляции проводов, является тест мегаом (или мегомметр), также известный как тест сопротивления изоляции (IR). Во время мегаомного тестирования испытательное оборудование прикладывает высокое напряжение постоянного тока (постоянного тока), обычно от 500 до 1500 В постоянного тока, между проводником и одним или несколькими другими проводниками в течение определенного периода времени. Поскольку мы проверяем целостность изоляции проводов, мы хотим, чтобы между проводниками протекал небольшой ток или он вообще отсутствовал.Таким образом, ожидается высокое значение сопротивления — обычно от 35 до 100 МОм.

Здесь, в InterConnect Wiring, большинство наших жгутов проводов и панелей устанавливаются на военных самолетах. Опасная ситуация может возникнуть, если нарушение изоляции проводов негативно повлияет на оборудование или приведет к травмам персонала, особенно в воздухе. Поэтому мы понимаем, насколько для нас чрезвычайно важно быстро обнаруживать любое повреждение изоляции в наших электропроводных изделиях в процессе производства и принимать превентивные меры.Каждое электрическое испытание, которое мы проводим на наших продуктах, включает испытание мегаомом. Мы прекрасно понимаем, что пробои изоляции проводов могут иметь место, даже если их не так легко увидеть. За прошедшие годы мы добились успехов в тестировании нашей продукции, чтобы убедиться, что наши провода «электрически» прочны. Когда мы проводим тест Меггера, желательно высокое сопротивление; поэтому, если Борг говорит нам, что СОПРОТИВЛЕНИЕ БЕСПОЛЕЗНО, мы смеемся ему в лицо. Мы гораздо жестче, чем они, и жгуты электропроводки наших самолетов тоже!

Родственные

Мегаомметр цифровой | Электрика — в продаже!

Мегаомметры — это приборы, используемые для измерения электрического сопротивления изоляторов.Их называют измерителями сопротивления изоляции или мегомметрами.

Целью измерения сопротивления является обнаружение любых повреждений или повреждений изоляции. Поломки и неисправности создают опасные ситуации, которые могут привести к повреждению оборудования, поражению электрическим током или даже смерти.

Приемлемый или «безопасный» диапазон показаний сопротивления изоляции составляет от 1 до 10 МОм, что указывает на хорошую целостность изоляции кабеля.

Почему важно использовать мегомметр?

Поскольку электрические системы и кабели со временем ухудшаются, ухудшается и качество изоляции.Атмосферные условия, такие как температура, влажность или частицы пыли, являются наиболее распространенными факторами, способствующими снижению качества и целостности электрической системы.

Что делает мегомметр?

Прибор генерирует высокое постоянное напряжение во время так называемого стресс-теста. Как правило, напряжения 250, 500 или 1000 вольт используются для большинства обычных проводов в системах низкого напряжения. В промышленных условиях используются напряжения до 5000 В, поскольку в этих высоковольтных системах класс кабеля выше.

Когда на проводник подается напряжение, через него протекает определенный ток. Величина тока зависит от приложенного напряжения, а также от емкости системы, сопротивления и температуры используемого материала. Стресс-тест показывает, есть ли какие-либо разрывы или неисправности в кабелях.

Какие производители производят измерители сопротивления?

В США есть несколько производителей, которые производят качественные мегомметры. Они включают, но не ограничиваются:

AEMC, Amprobe, Extech, Flir, Fluke, General Tools, Greenlee, Ideal Industries, Klein Tools.

Важно приобретать инструменты у известных производителей, так как они осуществляют строгий контроль качества в процессе производства. При работе с электричеством необходимо убедиться, что все факторы риска устранены.

Valuetesters.com является авторизованным дистрибьютором AEMC, Amprobe, Extech, Flir, Fluke, General Tools, Greenlee, Ideal Industries и Klein Tools.


Испытание мегомметром | Холт CA

Электрическая изоляция

подвержена многим воздействиям, которые могут привести к ее выходу из строя — механическому повреждению, вибрации, чрезмерному нагреву или холоду, грязи, маслу, агрессивным парам и влаге в воздухе.В той или иной степени эти враги изоляции действуют, и с течением времени и при электрических нагрузках могут образовываться точечные отверстия или трещины, позволяющие влаге и посторонним веществам проникать на поверхности изоляции.

Попадание влаги и инородных тел в изоляцию может привести к возникновению пути тока утечки с низким сопротивлением. Падение сопротивления изоляции может быть внезапным, например, когда оборудование залито водой, но в большинстве случаев падение происходит постепенно, что дает много предупреждений, если периодически проверять.

Снизьте риск отказа, неожиданного простоя и затрат на дорогостоящий аварийный ремонт, проверив генератор на наличие проблем с изоляцией с помощью теста мегаомметра. С помощью портативного ручного инструмента обученные технические специалисты Holt of California могут провести испытание изоляции вашего генератора методом временной стойкости, чтобы определить ее состояние.

Проверка мегаомметром может быть применена к большинству простых электрических цепей и устройств, включая:

  • Проводка
  • Двигатели
  • Переключатели
  • Обмотки генератора
  • Трансформаторы

Что включает проверка генератора мегаомметром?

Наш процесс проверки генератора мегомметром включает в себя комплексную проверку изоляции и обмоток на наличие признаков износа и загрязнений.Мы также проверим целостность и целостность изоляции и оценим общую эффективность генератора.

Преимущества нашего процесса тестирования мегаомметром включают:

  • Упреждающий анализ: Вы получите ценную информацию о состоянии вашего оборудования, что позволит вам исправить незначительные проблемы до того, как они станут серьезными проблемами.
  • Снижение риска отказа: Регулярные проверки могут снизить вероятность того, что ваш генератор и энергосистема не будут работать в аварийной ситуации.
  • Увеличьте ожидаемый срок службы оборудования: Поддерживая ваши мегаомметры в пиковом рабочем состоянии, регулярные испытания могут продлить срок службы вашего силового оборудования, увеличивая время между дорогостоящими заменами.
  • Упреждающий ремонт: Регулярные испытания помогут вам предвидеть, когда может произойти механическая неисправность, что позволит вам составить комплексный график ремонта.
  • Точные результаты: Точность теста мегомметра чрезвычайно высока, что позволяет вам принимать обоснованные решения по управлению оборудованием.

Как часто следует проводить проверку мегаомметром?

Holt of California рекомендует проверять мегаомметры один раз в пять лет. Мы можем проводить этот процесс чаще для приложений с высоким спросом или интенсивного использования. Мы будем работать с вами, чтобы установить график, который имеет смысл для вашего бизнеса.

Свяжитесь с нами по поводу нашей услуги по тестированию мегаомметров

У вас есть вопросы о процессе тестирования мегаомметра или вам нужно запланировать эту услугу для вашего бизнеса? Позвоните в компанию Holt of California Power Systems по телефону 800-452-5888 или свяжитесь с нами через Интернет для получения дополнительной информации.

Тестирование

мегомметров: достаточно ли этого?

Электродвигатели используются в промышленности уже почти 150 лет. Машина Грамма, первый электродвигатель, была обнаружена совершенно случайно в 1873 году. Никола Тесла изобрел первый практичный электродвигатель переменного тока в 1888 году, и с тех пор они применяются во всех отраслях промышленности. По данным Министерства энергетики США, на электродвигатели приходится 60% всего энергопотребления в промышленности, а типичный электродвигатель потребляет энергии в 5-12 раз больше своей покупной цены в течение первого года эксплуатации.Добавьте к этим фактам тот факт, что электродвигатели сами по себе недешевы, а их замена часто представляет собой монументальную задачу по обслуживанию. Таким образом, имеет смысл убедиться, что они работают в максимально работоспособном состоянии.

В течение многих лет электрики полагались на тесты Megger для определения состояния двигателя. «Megger» — это один из тех терминов, вроде «Xerox», где название бренда стало синонимом продукта или услуги. Тестирование мегомметром – это электрическое испытание характеристик изоляции в электрическом аппарате.К каждому фазному соединению проводов двигателя и заземления прикладывается мегаомметр, и подается напряжение. Измеритель измеряет величину напряжения, падающего в точке соединения между выводами двигателя и землей, и вычисляет значение изоляции, которое отображается пользователю. Обычно ожидается, что чем выше значение сопротивления, тем лучше, что часто и бывает. В лучшем случае цифры формируются в течение всего срока службы двигателя и используются в качестве индикатора надвигающегося отказа.

Эта практика до сих пор широко используется во многих настройках и часто представляет собой действие профилактического обслуживания (PM), которое выполняется через запланированные интервалы времени. Однако часто с помощью этого протокола испытаний невозможно предсказать отказы двигателя из-за ограничений самого метода. Тестирование мегомметром измеряет сопротивление между фазными обмотками тестируемого двигателя и землей. Если происходит пробой изоляции, это оказывает отрицательное влияние на сопротивление и происходит отклонение между фазами или между одним измерением и предыдущим, и выполняется определение исправности двигателя.Проблема тестирования Megger заключается в его ограниченности. Все, что он измеряет, это сопротивление заземления. Однако большинство отказов электродвигателей начинается с пробоя изоляции не между фазами и землей, а между наборами обмоток внутри фазы или между обмотками разных фаз. Само по себе меггер-тестирование не может выявить этот тип сбоя.

Измерение сопротивления обмоток часто добавляется в качестве еще одного метода проверки в дополнение к тестированию с помощью мегомметра, при этом ожидается, что изменения сопротивления будут индикатором неизбежного отказа, как и сопротивление заземления.Опять же, этот метод тестирования не всегда может найти короткое замыкание между обмотками. Хотя верно то, что на измерения сопротивления будет влиять межвитковое короткое замыкание, влияние только на сопротивление часто минимально. Однако существует большее влияние на полное сопротивление обмоток. Большинство мультиметров измеряют сопротивление, а не импеданс, и, к сожалению, у многих электриков сложилось впечатление, что сопротивление и импеданс — это одно и то же.

Электрическое сопротивление — это сопротивление электрическому току, а электрический импеданс — это сопротивление изменению электрического тока.Сопротивление и импеданс несколько похожи, но не одинаковы и не могут быть измерены одним и тем же способом. Часто в случае межвитковых коротких замыканий в обмотках двигателя происходит изменение импеданса, которое невозможно обнаружить с помощью простого измерения мультиметром.

Чтобы получить более точную оценку электрического состояния электродвигателя, необходимо выполнить не только тестирование мегомметром. Проверка индекса поляризации (PI) аналогична проверке мегомметром в том смысле, что она измеряет сопротивление между обмотками и землей для определения состояния изоляции обмоток.Разница в том, что тест PI измеряет сопротивление через одну минуту, а затем снова через 10 минут и измеряет соотношение. Здоровая изоляция обмоток будет демонстрировать увеличение сопротивления в течение периода измерения, что указывает на то, что изоляция была поляризована. Хрупкая изоляция не будет иметь такого же изменения, не покажет такого же увеличения сопротивления.

Сравнительное тестирование

Surge использовалось в течение последних 40 лет или около того, но только недавно стало широко использоваться. Испытание на перенапряжение основано на отсутствии различий между тремя фазами обмоток внутри двигателя, если нет дефектов.При замыканиях между катушками и между витками реакция на приложенный скачок напряжения (отсюда и название сравнительное испытание на выбросы) будет отличаться от реакции на обмотки без дефектов. Этот тип теста является единственным доступным в настоящее время методом, который выявляет эти ранние дефекты, которые со временем становятся более серьезными проблемами, влияющими на состояние двигателя.

Тестирование

Меггером хорошо и имеет свое место в режиме тестирования двигателя, но оно не обязательно должно быть самостоятельным. Наряду с другими методами тестирования, обсуждаемыми здесь, двигательное здоровье можно оценивать с гораздо более широкой точки зрения, что приводит к улучшению общего состояния двигательных активов.

Меггер (мегаомметр) — Engineer-Educators.com

Меггер, или мегомметр, представляет собой высокочастотный омметр, содержащий ручной генератор. Он используется для измерения сопротивления изоляции и других значений высокого сопротивления. Он также используется для проверки заземления, непрерывности и короткого замыкания в системах электроснабжения. Главным преимуществом мегомметра перед омметром является его способность измерять сопротивление при высоком потенциале или «пробойном» напряжении. Этот тип испытаний гарантирует, что изоляция или диэлектрический материал не закоротит или не протечет при потенциальном электрическом напряжении.

Меггер состоит из двух первичных элементов, каждый из которых снабжен индивидуальными магнитными полями от общего постоянного магнита: (1) ручного генератора постоянного тока G, который обеспечивает необходимый ток для проведения измерения, и (2 ) приборная часть, на которой указано значение измеряемого сопротивления. Инструментальная часть имеет оппозитный тип катушки. Катушки А и В установлены на подвижном элементе под фиксированным углом друг к другу и могут свободно вращаться как единое целое в магнитном поле.Катушка B стремится переместить указатель против часовой стрелки, а катушка A — по часовой стрелке. Катушки установлены на легкой подвижной раме, которая вращается в подшипниках с драгоценными камнями и может свободно перемещаться вокруг оси 0. [Рис. 151] 

Рис. 151. Упрощенная схема мегомметра.

Катушка Aподключена последовательно с R3 и измеряемым неизвестным сопротивлением Rx. Последовательная комбинация катушек A, R3 и Rx подключена между + и — щетками генератора постоянного тока. Катушка B соединена последовательно с R2, и эта комбинация также подключена к генератору.На подвижном элементе приборной части мегомметра нет удерживающих пружин. Когда генератор не работает, стрелка свободно плавает и может остановиться в любом положении на шкале.

Если клеммы разомкнуты, ток в катушке А не течет, и только ток в катушке В управляет движением подвижного элемента. Катушка Б занимает положение напротив зазора в сердечнике (поскольку сердечник не может двигаться, а катушка Б может), а стрелка указывает на бесконечность на шкале.Когда между клеммами подключено сопротивление, в катушке А течет ток, стремящийся переместить стрелку по часовой стрелке. В то же время катушка B стремится переместить стрелку против часовой стрелки. Следовательно, подвижный элемент, состоящий из обеих катушек и стрелки, останавливается в положении, в котором две силы уравновешены. Это положение зависит от значения внешнего сопротивления, которое контролирует относительную величину тока катушки А. Поскольку изменения напряжения влияют на обе катушки А и В в одинаковой пропорции, положение подвижного элемента не зависит от напряжения.Если клеммы замкнуты накоротко, стрелка остается на нуле, потому что ток в А относительно велик. В этих условиях прибор не повреждается, поскольку ток ограничивается резистором R3.

Существует два типа мегомметров с ручным приводом: с переменным давлением и с постоянным давлением.

Добавить комментарий

Ваш адрес email не будет опубликован.