Меню Закрыть

Обозначение клеммника на электрической схеме: Обозначение клеммы на схеме. Условные обозначения на электрических схемах (гост). Правила выполнения схем

Содержание

Клемма на электрической схеме

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТаКраткое описание
2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68Требования к размерам отображения элементов в графическом виде.
21.614 88Принятые нормы для планов электрооборудования и проводки.
2.755 87Отображение на схемах коммутационных устройств и контактных соединений
2.756 76Нормы для воспринимающих частей электромеханического оборудования.
2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять видов схем, из которых в электротехнике, чаще всего, используется три:

  • Функциональная, на ней представлены узловые элементы (изображаются как прямоугольники), а также соединяющие их линии связи. Характерная особенность такой схемы – минимальная детализация. Для описания основных функций узлов, отображающие их прямоугольники, подписываются стандартными буквенными обозначениями. Это могут быть различные части изделия, отличающиеся функциональным назначением, например, автоматический диммер с фотореле в качестве датчика или обычный телевизор. Пример такой схемы представлен ниже. Пример функциональной схемы телевизионного приемника
  • Принципиальная. Данный вид графического документа подробно отображает как используемые в конструкции элементы, так и их связи и контакты. Электрические параметры некоторых элементов могут быть отображены, непосредственно в документе, или представлены отдельно в виде таблицы. Пример принципиальной схемы фрезерного станка

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.

Пример однолинейной схемы

  • Монтажные электрические схемы. В данных документах применяются позиционные обозначения элементов, то есть указывается их место расположения на плате, способ и очередность монтажа. Монтажная схема стационарного сигнализатора горючих газов

Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.

Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.

УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.

Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.

УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.

Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

Обозначение электродвигателей на схемах

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.

Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.

Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.

Пример того, как указываются лампочки на схемах (ГОСТ 2.732-68)

Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.

Пример изображения на монтажных схемах розеток скрытой установки

Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.

Обозначение выключатели скрытой установки Обозначение розеток и выключателей

Буквенные обозначения

В электрических схемах помимо графических обозначений также используются буквенные, поскольку без последних чтение чертежей будет довольно проблематичным. Буквенно-цифровая маркировка так же, как и УГО регулируется нормативными документами, для электро это ГОСТ 7624 55. Ниже представлена таблица с БО для основных компонентов электросхем.

Буквенные обозначения основных элементов

К сожалению, размеры данной статьи не позволяют привести все правильные графические и буквенные обозначения, но мы указали нормативные документы, из которых можно получить всю недостающую информацию. Следует учитывать, что действующие стандарты могут меняться в зависимости от модернизации технической базы, поэтому, рекомендуем отслеживать выход новых дополнений к нормативным актам.

Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.

Введение

Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.

Условные обозначения можно считать особым криптографическим кодом, поясняющим работу и принцип действия конкретной схемы. В Японии, США и Европе значки существенно отличаются от отечественной маркировки, что необходимо учитывать.

Виды и типы электрических схем

Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».

  1. Объединенные.
  2. Расположенные.
  3. Общие.
  4. Подключения.
  5. Монтажные соединений.
  6. Полные принципиальные.
  7. Функциональные.
  8. Структурные.

Среди существующих 10 видов, указанных в данном документе, выделяют:

  1. Комбинированные.
  2. Деления.
  3. Энергетические.
  4. Оптические.
  5. Вакуумные.
  6. Кинематические.
  7. Газовые.
  8. Пневматические.
  9. Гидравлические.
  10. Электрические.

Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.

Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.

В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:

«Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».

После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.

Следует заметить, что чаще в домашней практике используются всего три типа электросхем:

  • Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
  • Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
  • Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.

Графические обозначения в электрических схемах

  • 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
  • 2.721-74 – графические условные обозначения деталей и узлов общего применения.
  • 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.

В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.

На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.

ВАЖНО: Для обозначения коммутационного оборудования существует:

4 базовых изображения УГО

УГОНаименование
Замыкающий
Размыкающий
Переключающий
Переключающий с наличием нейтрального положения

9 функциональных признаков УГО

ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.

Основные УГО для однолинейных схем электрощитов

УГОНаименование
Тепловое реле
Контакт контактора
Рубильник – выключатель нагрузки
Автомат – автоматический выключатель
Предохранитель
Дифференциальный автоматический выключатель
УЗО
Трансформатор напряжения
Трансформатор тока
Рубильник (выключатель нагрузки) с предохранителем
Автомат для защиты двигателя (со встроенным тепловым реле)
Частотный преобразователь
Электросчетчик
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который включается только при срабатывании
Катушка временного реле
Катушка фотореле
Катушка реле импульсного
Общее обозначение катушки реле или катушки контактора
Лампочка индикационная (световая), осветительная
Мотор-привод
Клемма (разборное соединение)
Варистор, ОПН (ограничитель перенапряжения)
Разрядник
Розетка (разъемное соединение):
Нагревательный элемент

Обозначение измерительных электроприборов для характеристики параметров цепи

УГОНаименование
PFЧастотомер
PWВаттметр
PVВольтметр
PAАмперметр

ГОСТ 2.271-74 приняты следующие обозначения в электрощитах для шин и проводов:

Буквенные обозначения в электрических схемах

Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:

НаименованиеОбозначение
Выключатель автоматический в силовой цепиQF
Выключатель автоматический в управляющей цепиSF
Выключатель автоматический с дифференциальной защитой или дифавтоматQFD
Рубильник или выключатель нагрузкиQS
УЗО (устройство защитного отключения)QSD
КонтакторKM
Реле тепловоеF, KK
Временное релеKT
Реле напряженияKV
Импульсное релеKI
ФоторелеKL
ОПН, разрядникFV
Предохранитель плавкийFU
Трансформатор напряженияTV
Трансформатор токаTA
Частотный преобразовательUZ
АмперметрPA
ВаттметрPW
ЧастотомерPF
ВольтметрPV
Счетчик энергии активнойPI
Счетчик энергии реактивнойPK
Элемент нагреванияEK
ФотоэлементBL
Осветительная лампаEL
Лампочка или прибор индикации световойHL
Разъем штепсельный или розеткаXS
Переключатель или выключатель в управляющих цепяхSA
Кнопочный выключатель в управляющих цепяхSB
КлеммыXT

Изображение электрооборудования на планах

Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.

Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.

Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2.302 в масштабе чертежа по фактическим габаритам.

Условные графические обозначения линий проводок и токопроводов

Условные графические изображения шин и шинопроводов

ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.

Условные графические изображения коробок, шкафов, щитов и пультов

Условные графические обозначения выключателей, переключателей

На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.

Условные графические обозначения штепсельных розеток

Условные графические обозначения светильников и прожекторов

Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.

Условные графические обозначения аппаратов контроля и управления

Заключение

Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.

Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.

Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.

Михаил Чуйков
Ведущий специалист, ООО «Розмысел»
Светлана Капитанова
Специалист по маркетингу, ООО «Розмысел»

Большинству проектировщиков, разрабатывающих электрические системы управления, знакомы неприятные хлопоты при использовании в проекте технологических элементов — клеммных блоков и разъемов. Слишком много времени уходит на их создание и поддержку актуальности при оперативной разработке электрооборудования. Переход на электронное проектирование позволяет автоматизировать их создание, ускорив процесс проектирования и уменьшив количество ошибок.

В процессе своего развития клеммные блоки (клеммники, клеммные колодки, ряды зажимов) стали наборными: на монтажной шине устанавливается переменное количество клемм. Для экономии пространства клеммы стали многоярусными, при этом изолированные друг от друга ярусы должны иметь свой уникальный номер. Кроме того, в клеммнике, наряду с обычными проходными, могут использоваться и специальные клеммы, выполняющие специфичные функции: измерительные клеммы, гальванические развязки, реле, индикаторы, переключатели и многое другое.

Однако в проектной документации клеммники зачастую оформляются традиционно: клеммный блок по­прежнему имеет только одно обозначение (типа XT1) и лишь для специальных клемм допускается использование дополнительных обозначений (например, для реле — XT1:K1).

Таким образом, пользователю, с одной стороны, необходимо свести к минимуму трудоемкость формирования клеммника, а с другой — обеспечить выпуск проектной документации в строгом соответствии с принятыми стандартами.

Рассмотрим основные возможности работы с клеммными блоками и разъемами в системе проектирования электрооборудования ElectriCS Pro 7.

Гибкость проектирования

При работе с клеммными блоками на разных стадиях создания проекта можно использовать несколько технологий:

  • формирование состава клеммника вручную применяется, когда проектировщик задал определенное количество клемм, задействованных в клеммнике. Подключение клеммника к электрическим связям осуществляется в принципиальной схеме. Эта традиционная технология довольно трудоемка;
  • автоматическое формирование клеммника на этапе разработки принципиальной схемы — клеммник создается на выходе из шкафа, а количество клемм вычисляется программой по количеству выходящих из шкафа электрических связей. При использовании данной технологии создание клеммника занимает небольшое время, а возможность появления ошибок сводится к минимуму. Применяется в проектах, где разрабатывается только принципиальная схема, а монтажные схемы (соединений и подключений) отсутствуют;
  • автоматическое формирование клеммника на этапе разработки схемы соединений или подключений — эта технология отличается от предыдущей тем, что применяется после трассировки электрических связей на проводники; клеммник автоматически подключается к выходящим из шкафа проводникам и кабелям.

Следует отметить, что при автоматическом формировании клеммного блока отображение элементов клеммника на принципиальной схеме не является обязательным.

Выбор технологии работы с клеммником зависит от принятого пользователем способа проектирования, стандартов оформления документации, степени детализации проектируемого объекта.

Окно Редактора клеммного блока. Присутствуют клеммы двух видов: первая клемма — двухъярусная, остальные — одноярусные. Для двухъярусной клеммы каждый ярус имеет свой номер. Для объединения соседних клемм использованы две перемычки. В нижней части окна отображен состав клеммного блока. Электрические связи показаны синим цветом, провода — желтым

Редактор клеммного блока

Основным инструментом при работе с клеммниками является Редактор клеммного блока, который позволяет создавать наборные клеммники как в ручном, так и в автоматизированном режиме, работать с многоярусными клеммами, использовать в составе клеммного блока специальные клеммы с активными элементами, разделять и объединять клеммные блоки.

Дополнительные функции Редактора клеммного блока:

  • нумерация клемм: по порядку возрастания, вручную, по номерам подходящих к клемме линий связи;
  • соединение клемм внешними перемычками, которые могут являться как готовыми изделиями типа «мостик», так и обычными проводами;
  • подключение на одну клемму электрических связей с разными номерами, но одного потенциала;
  • переподключение проводов с клеммы на клемму, с контакта на контакт.

Клеммник после автоматического подключения к электрическим связям. Использованы двухъярусные проходные клеммы. На закладке электрических связей включен фильтр, показывающий уходящие из оболочки электрические связи

Клеммник после автоматической вставки на провода. Использованы одноярусные проходные клеммы. Проводники обозначены желтым цветом. Пунктир показывает, что клеммники являются проходными

Автоматическое формирование клеммника на этапе разработки принципиальной схемы

По выходящим из шкафа электрическим связям создается клеммный блок с необходимым количеством проходных клемм. Пользователю достаточно лишь указать в базе изделий тип используемых клемм. При автоматическом подсчете клемм также учитываются изолированные уровни в выбранных клеммах.

Автоматическое формирование клеммника на этапе разработки схемы соединений или подключений

Данная операция применяется на этапе проектирования схемы соединений (подключений) и является наиболее удобной при работе с клеммниками. Пользователь указывает в проекте шкаф, в который нужно вставить клеммник, и выбирает из базы изделий тип клеммы. Автоматическое формирование клеммника осуществляется с учетом количества проводов и жил кабелей, выходящих из шкафа.

Клеммник на принципиальной электрической схеме. Одно УГО отображает несколько реальных контактов на клемме

Клеммник на схеме соединений. Клеммы отображаются с подключенными проводниками

Отображение клеммных блоков на принципиальных схемах

Чаще всего на принципиальной схеме клеммник отображается разнесенным способом. Каждая клемма представлена в виде условно­графического обозначения (УГО) — символа Æ, который заменяет собой несколько реальных контактов.

Отображение клеммных блоков на схемах соединений (подключений)

Для отображения клеммного блока на монтажных схемах используется динамическое УГО. Диалог вставки УГО позволяет размещать клеммный блок на схеме частями. Проводники отрисовываются автоматически, на конце проводника указывается адрес его подключения.

Генерация отчета «Ряд зажимов»

Для генерации табличного документа типа «Ряд зажимов» используется Мастер отчетов. В отчет выводятся клеммные блоки по выбранному шкафу. Мастер отчетов в ElectriCS Pro 7 позволяет разрабатывать собственные формы сопроводительной документации для схем.

Отчет «Ряд зажимов»

Применение специальных типов клемм

Система ElectriCS Pro позволяет использовать в составе клеммного блока, наряду с обычными проходными клеммами, клеммы специального назначения, например измерительные клеммы, гальванические развязки, реле, индикаторы, переключатели и т.д. Особенностью этих элементов является поддержка дополнительного обозначения. Например, провод, идущий на такую специальную клемму, будет иметь в адресе подключения — XT1:K1:21.

Использование в клеммнике специальных клемм (реле)

Разделение и «склеивание» клеммных блоков

В процессе проектирования может оказаться, что клеммник получился слишком длинным и его необходимо разделить на два клеммника. В Редакторе клеммного блока указываются клеммы, подлежащие переносу в другой клеммник, и выполняется соответствующая команда. Существует и обратная операция — соединение двух клеммных блоков в один. При переносе из одного клеммника в другой клеммы сохраняют маркировку, тип и соединения проводами.

Инструмент автоматической вставки разъема

ElectriCS Pro поддерживает работу с любыми видами промышленных разъемов. Для удобства создания разъемов используется инструмент автоматической вставки разъема на провода — Разрезка проводов разъемом. Для создания разъема достаточно выбрать в базе изделий его тип и указать «разрезаемые» проводники.

Инструмент автоматической вставки разъема на провода

Заключение

В системе ElectriCS Pro 7 работа с такими технологическими элементами, как клеммные блоки и разъемы, максимально автоматизирована. Достаточно выбрать провода и применить команду их «разрезки» клеммным блоком или разъемом. Если стандарты проектирования не предусматривают обязательное размещение данных технологических элементов на принципиальной схеме, то размещать их необязательно. Однако они, естественно, будут учитываться на монтажных документах — схемах подключений, соединений и в табличных отчетах.

Как на электрических схемах показывать клеммники. AutoCAD Electrical

 


 

Здесь рядом со стандартными элементами Э3 видим не совсем стандартное изображение клеммной колодки (ящика)     
                                                                                                  
Таких условно-графических элементов (УГО) в базе электрикала конечно нет. Поэтому мы создадим специальное УГО для этого типа схем.

Рассмотрим из каких составляющих состоит клеммная колодка.
Условно ее можно разбить на два фрагмента
1 часть – «шапка» клеммной колодки


2 часть – клеммы колодки

А так как в Автокад электрикал любая клеммная колодка – это набор
Элементов, имеющий «тип – клемма», то колодка будет иметь два образа УГО
1 – шапка,









2 – непосредственно клеммы.



 










Все решается очень просто.  Теперь дело за реализацией
Создадим отдельно графику шапки клеммной колодки и самой клеммы


Теперь создаем уго шапки — изюминка здесь будет та, что мы укажем обязательные атрибуты, в том числе TAG, служащий для обозначения клеммной колодки
…. и не будем указывать точек подключения, чтобы случайно не подключить «шапку» в сеть



 

Вставляем «шапку» в чертеж, т.к. точек подключения мы не указывали при создании УГО, то как и задумывалось, они нам не доступны, здесь задаем только номер клеммной колодки,



Теперь создадим уго клеммы.

 

Точку вставки укажем левый верхний угол


здесь вставляем все обязательные атрибуты,
для удобства атрибут TAG сделаем невидимым (чтобы имя клеммной колодки не вставлялось каждый раз при вставке клеммы),
атрибут DESC1 будет служить для описания цепи.
Корректно указываем точки подключения.  

 


 

а теперь вставляем полученное уго в чертеж, задаем номера клемм и описание цепи «ремонт», «отсек2»

 

Для проверки командой «многопроводная шина» подключаем провода.

как видите точки подключения подсвечиваеются корректно.

провода подключаются без проблем.

 


Таким образом, поставленная задача выполнена: клеммники имеют требуемый вид, с точки зрения AutoCAD  Electrical  тоже все выполнено правильно: элемент имеет тип «клемма», отчеты сформируются нормально
 

Разъёмные соединения, таблицы соединений | Символы, элементы, шаблоны Visio

Трафарет Visio Разъемные соединения, таблицы соединений.


Состав трафарета Visio Разъемные соединения, таблицы соединений.

1. Разъемные соединения.

Фигура Visio

Условное обозначение

Клеммная колодка.

Клеммная колодка 2-12 клемм.

Клеммная колодка 13-22 клемм.

Штепсельное соединение.

Штепсельное соединение 2-12 соединений.

Штепсельное соединение 13-22 соединений.

Гнездовой контакт.

Гнездовой контакт 2-12 соединений.

Гнездовой контакт 13-22 соединений.

Штыревой контакт.

Штыревой контакт 2-12 соединений.

Штыревой контакт 13-22 соединений.

Соединительный узел.

Соединение, подвижная часть.

Соединение, неподвижная часть.

Соединительное звено, замкнутое или открытое.

Соединительное звено, на 2 направления.

Соединительное звено, на 3 направления.

Примечание: количество клемм для клеммных колодок и количество контактов для штепсельных соединителей изменяется с помощью маркера ширины фигуры Visio.


Изменение количества контактов для штепсельного соединителя.

 

2. Таблицы соединений.

Фигура Visio

Таблица соединений

Таблица входных и выходных цепей (по ГОСТ 2.702-2011, рис. 9)

Таблица соединений (по ГОСТ 2.702-2011, рис. 11а)

Таблица соединений (по ГОСТ 2.702-2011, рис. 11б)

Таблица соединений (по ГОСТ 2.702-2011, рис. 13а)

Таблица соединений (по ГОСТ 2.702-2011, рис. 13б)

Таблица соединений (по ГОСТ 2.702-2011, рис. 14а)

Таблица соединений (по ГОСТ 2.702-2011, рис. 14б)

 

Для всех выше представленных шаблонов, можно изменить ширину таблиц с помощью маркеров выделения и ширину колонок с помощью управляющих маркеров.

А так же, в контекстном меню фигуры таблицы:

  • показать или скрыть Наименование граф (заголовок таблицы),
  • линии строк сделать тонкими или равными толщине линий таблицы,
  • отобразить таблицу зеркально,
  • повернуть таблицу вертикально или горизонтально,
  • поменять местами разъем и штекер в символе разъемного соединения.


Рис. 1. Контекстное меню шаблона Visio Таблица соединений.

Количество строк таблиц, меняется в таблице данных фигуры от 1 до 25 или устанавливается параметр автоматически (рис. 2).


Рис. 2. Таблица данных шаблона Visio Таблица соединений.

В режиме автоматически, строки добавляются в режиме заполнения, в зависимости от количества текстовых строк (Enter — новая строка, Tab — переход в новую колонку).

Примечание: таблицы соединений располагаются непосредственно на схеме, поэтому при изменении масштаба документа, все элементы таблиц изменяют свои размеры пропорционально изменению размеров элементов схемы.


работа с клеммными блоками и разъемами

Михаил Чуйков
Ведущий специалист, ООО «Розмысел»
Светлана Капитанова
Специалист по маркетингу, ООО «Розмысел»

Большинству проектировщиков, разрабатывающих электрические системы управления, знакомы неприятные хлопоты при использовании в проекте технологических элементов — клеммных блоков и разъемов. Слишком много времени уходит на их создание и поддержку актуальности при оперативной разработке электрооборудования. Переход на электронное проектирование позволяет автоматизировать их создание, ускорив процесс проектирования и уменьшив количество ошибок.

В процессе своего развития клеммные блоки (клеммники, клеммные колодки, ряды зажимов) стали наборными: на монтажной шине устанавливается переменное количество клемм. Для экономии пространства клеммы стали многоярусными, при этом изолированные друг от друга ярусы должны иметь свой уникальный номер. Кроме того, в клеммнике, наряду с обычными проходными, могут использоваться и специальные клеммы, выполняющие специфичные функции: измерительные клеммы, гальванические развязки, реле, индикаторы, переключатели и многое другое.

Однако в проектной документации клеммники зачастую оформляются традиционно: клеммный блок по­прежнему имеет только одно обозначение (типа XT1) и лишь для специальных клемм допускается использование дополнительных обозначений (например, для реле — XT1:K1).

Таким образом, пользователю, с одной стороны, необходимо свести к минимуму трудоемкость формирования клеммника, а с другой — обеспечить выпуск проектной документации в строгом соответствии с принятыми стандартами.

Рассмотрим основные возможности работы с клеммными блоками и разъемами в системе проектирования электрооборудования ElectriCS Pro 7.

Гибкость проектирования

При работе с клеммными блоками на разных стадиях создания проекта можно использовать несколько технологий:

  • формирование состава клеммника вручную применяется, когда проектировщик задал определенное количество клемм, задействованных в клеммнике. Подключение клеммника к электрическим связям осуществляется в принципиальной схеме. Эта традиционная технология довольно трудоемка;
  • автоматическое формирование клеммника на этапе разработки принципиальной схемы — клеммник создается на выходе из шкафа, а количество клемм вычисляется программой по количеству выходящих из шкафа электрических связей. При использовании данной технологии создание клеммника занимает небольшое время, а возможность появления ошибок сводится к минимуму. Применяется в проектах, где разрабатывается только принципиальная схема, а монтажные схемы (соединений и подключений) отсутствуют;
  • автоматическое формирование клеммника на этапе разработки схемы соединений или подключений — эта технология отличается от предыдущей тем, что применяется после трассировки электрических связей на проводники; клеммник автоматически подключается к выходящим из шкафа проводникам и кабелям.

Следует отметить, что при автоматическом формировании клеммного блока отображение элементов клеммника на принципиальной схеме не является обязательным.

Выбор технологии работы с клеммником зависит от принятого пользователем способа проектирования, стандартов оформления документации, степени детализации проектируемого объекта.

Окно Редактора клеммного блока. Присутствуют клеммы двух видов: первая клемма — двухъярусная, остальные — одноярусные. Для двухъярусной клеммы каждый ярус имеет свой номер. Для объединения соседних клемм использованы две перемычки. В нижней части окна отображен состав клеммного блока. Электрические связи показаны синим цветом, провода — желтым

Редактор клеммного блока

Основным инструментом при работе с клеммниками является Редактор клеммного блока, который позволяет создавать наборные клеммники как в ручном, так и в автоматизированном режиме, работать с многоярусными клеммами, использовать в составе клеммного блока специальные клеммы с активными элементами, разделять и объединять клеммные блоки.

Дополнительные функции Редактора клеммного блока:

  • нумерация клемм: по порядку возрастания, вручную, по номерам подходящих к клемме линий связи;
  • соединение клемм внешними перемычками, которые могут являться как готовыми изделиями типа «мостик», так и обычными проводами;
  • подключение на одну клемму электрических связей с разными номерами, но одного потенциала;
  • переподключение проводов с клеммы на клемму, с контакта на контакт.

Клеммник после автоматического подключения к электрическим связям. Использованы двухъярусные проходные клеммы. На закладке электрических связей включен фильтр, показывающий уходящие из оболочки электрические связи

Клеммник после автоматической вставки на провода. Использованы одноярусные проходные клеммы. Проводники обозначены желтым цветом. Пунктир показывает, что клеммники являются проходными

Автоматическое формирование клеммника на этапе разработки принципиальной схемы

По выходящим из шкафа электрическим связям создается клеммный блок с необходимым количеством проходных клемм. Пользователю достаточно лишь указать в базе изделий тип используемых клемм. При автоматическом подсчете клемм также учитываются изолированные уровни в выбранных клеммах.

Автоматическое формирование клеммника на этапе разработки схемы соединений или подключений

Данная операция применяется на этапе проектирования схемы соединений (подключений) и является наиболее удобной при работе с клеммниками. Пользователь указывает в проекте шкаф, в который нужно вставить клеммник, и выбирает из базы изделий тип клеммы. Автоматическое формирование клеммника осуществляется с учетом количества проводов и жил кабелей, выходящих из шкафа.

Клеммник на принципиальной электрической схеме. Одно УГО отображает несколько реальных контактов на клемме

Клеммник на схеме соединений. Клеммы отображаются с  подключенными проводниками

Отображение клеммных блоков на принципиальных схемах

Чаще всего на принципиальной схеме клеммник отображается разнесенным способом. Каждая клемма представлена в виде условно­графического обозначения (УГО) — символа Æ, который заменяет собой несколько реальных контактов.

Отображение клеммных блоков на схемах соединений (подключений)

Для отображения клеммного блока на монтажных схемах используется динамическое УГО. Диалог вставки УГО позволяет размещать клеммный блок на схеме частями. Проводники отрисовываются автоматически, на конце проводника указывается адрес его подключения.

Генерация отчета «Ряд зажимов»

Для генерации табличного документа типа «Ряд зажимов» используется Мастер отчетов. В отчет выводятся клеммные блоки по выбранному шкафу. Мастер отчетов в ElectriCS Pro 7 позволяет разрабатывать собственные формы сопроводительной документации для схем.

Отчет «Ряд зажимов»

Применение специальных типов клемм

Система ElectriCS Pro позволяет использовать в составе клеммного блока, наряду с обычными проходными клеммами, клеммы специального назначения, например измерительные клеммы, гальванические развязки, реле, индикаторы, переключатели и т.д. Особенностью этих элементов является поддержка дополнительного обозначения. Например, провод, идущий на такую специальную клемму, будет иметь в адресе подключения — XT1:K1:21.

Использование в клеммнике специальных клемм (реле)

Разделение и «склеивание» клеммных блоков

В процессе проектирования может оказаться, что клеммник получился слишком длинным и его необходимо разделить на два клеммника. В Редакторе клеммного блока указываются клеммы, подлежащие переносу в другой клеммник, и выполняется соответствующая команда. Существует и обратная операция — соединение двух клеммных блоков в один. При переносе из одного клеммника в другой клеммы сохраняют маркировку, тип и соединения проводами.

Инструмент автоматической вставки разъема

ElectriCS Pro поддерживает работу с любыми видами промышленных разъемов. Для удобства создания разъемов используется инструмент автоматической вставки разъема на провода — Разрезка проводов разъемом. Для создания разъема достаточно выбрать в базе изделий его тип и указать «разрезаемые» проводники.

Инструмент автоматической вставки разъема на провода

Заключение

В системе ElectriCS Pro 7 работа с такими технологическими элементами, как клеммные блоки и разъемы, максимально автоматизирована. Достаточно выбрать провода и применить команду их «разрезки» клеммным блоком или разъемом. Если стандарты проектирования не предусматривают обязательное размещение данных технологических элементов на принципиальной схеме, то размещать их необязательно. Однако они, естественно, будут учитываться на монтажных документах — схемах подключений, соединений и в табличных отчетах.

САПР и графика 9`2012

Как обозначаются клеммы на схеме. Актуальные буквенные и графические обозначения на электрических схемах. Элементная база для схем электропроводки

Если для обычного человека восприятие информации происходит при чтении слов и букв, то для слесарей и монтажников их заменяют буквенные, цифровые или графические обозначения. Сложность в том, что пока электрик закончит обучение, устроится на работу, научится чему-то на практике, как появляются новые СНиПы и ГОСТы, согласно которым вносятся коррективы. Поэтому не стоит пытаться выучить всю документацию и сразу же. Достаточно почерпнуть базовые познания, а по ходу трудовых будней добавлять актуальные данные.

Для конструкторов цепей, слесарей КИПиА, электромонтеров, умение прочитать электросхему – ключевое качество и показатель квалификации. Без специальных знаний сходу разобраться в тонкостях проектирования приборов, цепей и способах соединения электроузлов невозможно.

Виды и типы электрических схем

Перед тем, как начать изучать существующие обозначения электрооборудования и его соединения, необходимо разобраться с типологией схем. На территории нашей страны введена стандартизация по ГОСТ 2.701-2008 от 1.07.2009 года, согласно «ЕСКД. Схемы. Типы и виды. Общие требования».


Исходя из этого норматива, все схемы разделены на 8 типов:
  1. Объединенные.
  2. Расположенные.
  3. Общие.
  4. Подключения.
  5. Монтажные соединений.
  6. Полные принципиальные.
  7. Функциональные.
  8. Структурные.

Среди существующих 10 видов, указанных в данном документе, выделяют:

  1. Комбинированные.
  2. Деления.
  3. Энергетические.
  4. Оптические.
  5. Вакуумные.
  6. Кинематические.
  7. Газовые.
  8. Пневматические.
  9. Гидравлические.
  10. Электрические.

Для электриков представляет наибольший интерес среди всех вышеперечисленных типов и видов схем, а также самая востребованная и часто используемая в работе – электрическая схема.

Последний ГОСТ, который вышел, дополнен многими новыми обознвачениями, актуальный на сегодня с шифром 2.702-2011 от 1.01.2012 года. Называется документ «ЕСКД. Правила выполнения электрических схем», ссылается на другие ГОСТы, среди которых упомянутый выше.

В тексте норматива изложены четкие требования в подробностях к электросхемам всех видов. Поэтому руководствоваться при монтажных работах с электрическими схемами следует именно данным документом. Определение понятия электрической схемы, согласно ГОСТ 2.702-2011 следующее:

«Под электрической схемой следует понимать документ, содержащий условные обозначения частей изделия и/или отдельных деталей с описанием взаимосвязи между ними, принципов действия от электрической энергии».

После определения в документе содержатся правила реализации на бумаге и в программных средах обозначений контактных соединений, маркировки проводов, буквенных обозначений и графического изображения электрических элементов.

Следует заметить, что чаще в домашней практике используются всего три типа электросхем:

  • Монтажные – для прибора изображается печатная плата с расположением элементов при четком указании места, номинала, принципа крепления и подведения к другим деталям. В схемах электропроводки для жилых помещений указывается количество, место расположения, номинал, способ подключения и другие точные указания для монтажа проводов, выключателей, светильников, розеток и т.п.
  • Принципиальные – на них указываются подробно связи, контакты и характеристика каждого элемента для сетей или приборов. Различают полные и линейные принципиальные схемы. В первом случае изображается контроль, управление элементами и сама силовая цепь; в линейной схеме ограничиваются только цепью с изображением остальных элементов на отдельных листах.
  • Функциональные – здесь без детализации физических габаритов и других параметров указывается основные узлы прибора или цепи. Любая деталь может изображаться в виде блока с буквенным обозначением, дополненного связями с другими элементами устройства.

Графические обозначения в электрических схемах


Документация, в которой указываются правила и способы графического обозначения элементов схемы, представлена тремя ГОСТами:
  • 2.755-87 – графические условные обозначения контактных и коммутационных соединений.
  • 2.721-74 – графические условные обозначения деталей и узлов общего применения.
  • 2.709-89 – графические условные обозначения в электросхемах участков цепей, оборудования, контактных соединений проводов, электроэлементов.

В нормативе с шифром 2.755-87 применяется для схем однолинейных электрощитов, условные графические изображения (УГО) тепловых реле, контакторов, рубильников, автоматических выключателей, иного коммутационного оборудования. Отсутствует обозначение в нормативах дифавтоматов и УЗО.

На страницах ГОСТ 2.702-2011 допускается изображение этих элементов в произвольном порядке, с приведением пояснений, расшифровки УГО и самой схемы дифавтоматов и УЗО.
В ГОСТ 2.721-74 содержатся УГО, применяемые для вторичных электрических цепей.

ВАЖНО: Для обозначения коммутационного оборудования существует:

4 базовых изображения УГО

9 функциональных признаков УГО

УГО Наименование
Дугогашение
Без самовозврата
С самовозвратом
Концевой или путевой выключатель
С автоматическим срабатыванием
Выключатель-разъединитель
Разъединитель
Выключатель
Контактор

ВАЖНО: Обозначения 1 – 3 и 6 – 9 наносятся на неподвижные контакты, 4 и 5 – помещаются на подвижные контакты.

Основные УГО для однолинейных схем электрощитов

УГО Наименование
Тепловое реле
Контакт контактора
Рубильник – выключатель нагрузки
Автомат – автоматический выключатель
Предохранитель
Дифференциальный автоматический выключатель
УЗО
Трансформатор напряжения
Трансформатор тока
Рубильник (выключатель нагрузки) с предохранителем
Автомат для защиты двигателя (со встроенным тепловым реле)
Частотный преобразователь
Электросчетчик
Замыкающий контакт с кнопкой «сброс» или другим нажимным кнопочным выключателем, с возвратом и размыканием посредством специального привода элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством втягивания кнопки элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием посредством повторного нажатия на кнопку элемента управления
Замыкающий контакт с нажимным кнопочным выключателем, с возвратом и размыканием автоматически элемента управления
Замыкающий контакт с замедленным действием, который инициируется при возврате и срабатывании
Замыкающий контакт с замедленным действием, который инициируется только при срабатывании
Замыкающий контакт с замедленным действием, который приводится в работу при возврате и срабатывании
Замыкающий контакт с замедленным действием, который срабатывает только при возврате
Замыкающий контакт с замедленным действием, который включается только при срабатывании
Катушка временного реле
Катушка фотореле
Катушка реле импульсного
Общее обозначение катушки реле или катушки контактора
Лампочка индикационная (световая), осветительная
Мотор-привод
Клемма (разборное соединение)
Варистор, ОПН (ограничитель перенапряжения)
Разрядник
Розетка (разъемное соединение):
Нагревательный элемент

Обозначение измерительных электроприборов для характеристики параметров цепи

ГОСТ 2.271-74 приняты следующие обозначения в электрощитах для шин и проводов:

Буквенные обозначения в электрических схемах

Нормативы буквенного обозначения элементов на электрических схемах описываются в нормативе ГОСТ 2.710-81 с названием текста «ЕСКД. Буквенно-цифровые обозначения в электрических схемах». Здесь не указывается отметка для дифавтоматов и УЗО, что в п. 2.2.12 этого норматива прописывается, как обозначение многобуквенными кодами. Для основных элементов электрощитов приняты следующие буквенные кодировки:

Наименование Обозначение
Выключатель автоматический в силовой цепиQF
Выключатель автоматический в управляющей цепиSF
Выключатель автоматический с дифференциальной защитой или дифавтоматQFD
Рубильник или выключатель нагрузкиQS
УЗО (устройство защитного отключения)QSD
КонтакторKM
Реле тепловоеF, KK
Временное релеKT
Реле напряженияKV
Импульсное релеKI
ФоторелеKL
ОПН, разрядникFV
Предохранитель плавкийFU
Трансформатор напряженияTV
Трансформатор токаTA
Частотный преобразовательUZ
АмперметрPA
ВаттметрPW
ЧастотомерPF
ВольтметрPV
Счетчик энергии активнойPI
Счетчик энергии реактивнойPK
Элемент нагреванияEK
ФотоэлементBL
Осветительная лампаEL
Лампочка или прибор индикации световойHL
Разъем штепсельный или розеткаXS
Переключатель или выключатель в управляющих цепяхSA
Кнопочный выключатель в управляющих цепяхSB
КлеммыXT

Изображение электрооборудования на планах

Несмотря на то, что ГОСТ 2.702-2011 и ГОСТ 2.701-2008 учитывает такой вид электросхемы как «схема расположения» для проектирования сооружений и зданий, при этом нужно руководствоваться нормативами ГОСТ 21.210-2014, в которых указывается «СПДС.

Изображения на планах условных графических проводок и электрооборудования». В документе установлено УГО на планах прокладки электросетей электрооборудования (светильников, выключателей, розеток, электрощитов, трансформаторов), кабельных линий, шинопроводов, шин.

Применение этих условных обозначений используется для составления чертежей электрического освещения, силового электрооборудования, электроснабжения и других планов. Использование данных обозначений применяется также в принципиальных однолинейных схемах электрощитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Контуры всех изображаемых устройств, в зависимости от информационной насыщенности и сложности конфигурации, принимаются согласно ГОСТ 2.302 в масштабе чертежа по фактическим габаритам.

Условные графические обозначения линий проводок и токопроводов

Условные графические изображения шин и шинопроводов

ВАЖНО: Проектное положение шинопровода должно точно совпадать на схеме с местом его крепления.

Условные графические изображения коробок, шкафов, щитов и пультов

Условные графические обозначения выключателей, переключателей

На страницах документации ГОСТ 21.210-2014 для кнопочных выключателей, диммеров (светорегуляторов) отдельно отведенного обозначения не предусмотрено. В некоторых схемах, согласно п. 4.7. нормативного акта используются произвольные обозначения.

Условные графические обозначения штепсельных розеток

Условные графические обозначения светильников и прожекторов

Обновленная версия ГОСТ содержит изображения светильников с лампами люминесцентными и светодиодными.

Условные графические обозначения аппаратов контроля и управления

Заключение

Приведенные графические и буквенные изображения электродеталей и электрических цепей являются не полным списком, поскольку в нормативах содержится много специальных знаков и шифров, которые в быту практически не применяются. Для чтения электрических схем потребуется учитывать много факторов, прежде всего – страну производителя прибора или электрооборудования, проводки и кабелей. Существует разница в маркировке и условном обозначении на схемах, что может изрядно сбить с толку.

Во-вторых, следует внимательно рассматривать такие участки, как пересечение или отсутствие общей сети для расположенных с накладкой проводов. На зарубежных схемах при отсутствии у шины или кабеля общего питания с пересекающими объектами, рисуется полукруговое продолжение в месте соприкосновения. В отечественных схемах это не используется.

Если схема изображается без соблюдения установленных ГОСТами нормативов, то ее называют эскизом. Но для этой категории также есть определенные требования, согласно которым по приведенному эскизу должно составляться примерное понимание будущей электропроводки или конструкции прибора. Рисунки могут использоваться для составления по ним более точных чертежей и схем, с нужными обозначениями, маркировкой и соблюдением масштабов.

Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео

Любые электрические цепи могут быть представлены в виде чертежей (принципиальных и монтажных схем), оформление которых должно соответствовать стандартам ЕСКД. Эти нормы распространяются как на схемы электропроводки или силовых цепей, так и электронные приборы. Соответственно, чтобы «читать» такие документы, необходимо понимать условные обозначения в электрических схемах.

Нормативные документы

Учитывая большое количество электроэлементов, для их буквенно-цифровых (далее БО) и условно графических обозначений (УГО) был разработан ряд нормативных документов исключающих разночтение. Ниже представлена таблица, в которой представлены основные стандарты.

Таблица 1. Нормативы графического обозначения отдельных элементов в монтажных и принципиальных электрических схемах.

Номер ГОСТаКраткое описание
2.710 81В данном документе собраны требования ГОСТа к БО различных типов электроэлементов, включая электроприборы.
2.747 68Требования к размерам отображения элементов в графическом виде.
21.614 88Принятые нормы для планов электрооборудования и проводки.
2.755 87Отображение на схемах коммутационных устройств и контактных соединений
2.756 76Нормы для воспринимающих частей электромеханического оборудования.
2.709 89Настоящий стандарт регулирует нормы, в соответствии с которыми на схемах обозначаются контактные соединения и провода.
21.404 85Схематические обозначения для оборудования, используемого в системах автоматизации

Следует учитывать, что элементная база со временем меняется, соответственно вносятся изменения и в нормативные документы, правда это процесс более инертен. Приведем простой пример, УЗО и дифавтоматы широко эксплуатируются в России уже более десятка лет, но единого стандарта по нормам ГОСТ 2.755-87 для этих устройств до сих пор нет, в отличие от автоматических выключателей. Вполне возможно, в ближайшее время это вопрос будет урегулирован. Чтобы быть в курсе подобных нововведений, профессионалы отслеживают изменения в нормативных документах, любителям это делать не обязательно, достаточно знать расшифровку основных обозначений.

Виды электрических схем

В соответствии с нормами ЕСКД под схемами подразумеваются графические документы, на которых при помощи принятых обозначений отображаются основные элементы или узлы конструкции, а также объединяющие их связи. Согласно принятой классификации различают десять , из которых в электротехнике, чаще всего, используется три:

Если на схеме отображается только силовая часть установки, то она называется однолинейной, если приведены все элементы, то – полной.



Если на чертеже отображается проводка квартиры, то места расположения осветительных приборов, розеток и другого оборудования указываются на плане. Иногда можно услышать, как такой документ называют схемой электроснабжения, это неверно, поскольку последняя отображает способ подключения потребителей к подстанции или другому источнику питания.

Разобравшись с электрическими схемами, можем переходить к обозначениям указанных на них элементов.

Графические обозначения

Для каждого типа графического документа предусмотрены свои обозначения, регулируемые соответствующими нормативными документами. Приведем в качестве примера основные графические обозначения для разных видов электрических схем.

Примеры УГО в функциональных схемах

Ниже представлен рисунок с изображением основных узлов систем автоматизации.


Примеры условных обозначений электроприборов и средств автоматизации в соответствии с ГОСТом 21.404-85

Описание обозначений:

  • А – Основные (1) и допускаемые (2) изображения приборов, которые устанавливаются за пределами электрощита или распределительной коробки.
  • В – Тоже самое, что и пункт А, за исключением того, что элементы располагаются на пульте или электрощите.
  • С – Отображение исполнительных механизмов (ИМ).
  • D – Влияние ИМ на регулирующий орган (далее РО) при отключении питания:
  1. Происходит открытие РО
  2. Закрытие РО
  3. Положение РО остается неизменным.
  • Е — ИМ, на который дополнительно установлен ручной привод. Данный символ может использоваться для любых положений РО, указанных в пункте D.
  • F- Принятые отображения линий связи:
  1. Общее.
  2. Отсутствует соединение при пересечении.
  3. Наличие соединения при пересечении.

УГО в однолинейных и полных электросхемах

Для данных схем существует несколько групп условных обозначений, приведем наиболее распространенные из них. Для получения полной информации необходимо обратиться к нормативным документам, номера государственных стандартов будут приведены для каждой группы.

Источники питания.

Для их обозначения приняты символы, приведенные на рисунке ниже.


УГО источников питания на принципиальных схемах (ГОСТ 2.742-68 и ГОСТ 2.750.68)

Описание обозначений:

  • A – источник с постоянным напряжением, его полярность обозначается символами «+» и «-».
  • В – значок электричества, отображающий переменное напряжение.
  • С – символ переменного и постоянного напряжения, используется в тех случаях, когда устройство может быть запитано от любого из этих источников.
  • D – Отображение аккумуляторного или гальванического источника питания.
  • E- Символ батареи, состоящей из нескольких элементов питания.

Линии связи

Базовые элементы электрических соединителей представлены ниже.


Обозначение линий связи на принципиальных схемах (ГОСТ 2.721-74 и ГОСТ 2.751.73)

Описание обозначений:

  • А – Общее отображение, принятое для различных видов электрических связей.
  • В – Токоведущая или заземляющая шина.
  • С – Обозначение экранирования, может быть электростатическим (помечается символом «Е») или электромагнитным («М»).
  • D — Символ заземления.
  • E – Электрическая связь с корпусом прибора.
  • F – На сложных схемах, из нескольких составных частей, таким образом обозначается обрыв связи, в таких случаях «Х» это информация о том, где будет продолжена линия (как правило, указывается номер элемента).
  • G – Пересечение с отсутствием соединения.
  • H – Соединение в месте пересечения.
  • I – Ответвления.

Обозначения электромеханических приборов и контактных соединений

Примеры обозначения магнитных пускателей, реле, а также контактов коммуникационных устройств, можно посмотреть ниже.


УГО, принятые для электромеханических устройств и контакторов (ГОСТы 2.756-76, 2.755-74, 2.755-87)

Описание обозначений:

  • А – символ катушки электромеханического прибора (реле, магнитный пускатель и т.д.).
  • В – УГО воспринимающей части электротепловой защиты.
  • С – отображение катушки устройства с механической блокировкой.
  • D – контакты коммутационных приборов:
  1. Замыкающие.
  2. Размыкающие.
  3. Переключающие.
  • Е – Символ для обозначения ручных выключателей (кнопок).
  • F – Групповой выключатель (рубильник).

УГО электромашин

Приведем несколько примеров, отображения электрических машин (далее ЭМ) в соответствии с действующим стандартом.


Обозначение электродвигателей и генераторов на принципиальных схемах (ГОСТ 2.722-68)

Описание обозначений:

  • A – трехфазные ЭМ:
  1. Асинхронные (ротор короткозамкнутый).
  2. Тоже, что и пункт 1, только в двухскоростном исполнении.
  3. Асинхронные ЭМ с фазным исполнением ротора.
  4. Синхронные двигатели и генераторы.
  • B – Коллекторные, с питанием от постоянного тока:
  1. ЭМ с возбуждением на постоянном магните.
  2. ЭМ с катушкой возбуждения.

УГО трансформаторов и дросселей

С примерами графических обозначений данных устройств можно ознакомиться на представленном ниже рисунке.


Правильные обозначения трансформаторов, катушек индуктивности и дросселей (ГОСТ 2.723-78)

Описание обозначений:

  • А – Данным графическим символом могут быть обозначены катушки индуктивности или обмотки трансформаторов.
  • В – Дроссель, у которого имеется ферримагнитный сердечник (магнитопровод).
  • С – Отображение двухкатушечного трансформатора.
  • D – Устройство с тремя катушками.
  • Е – Символ автотрансформатора.
  • F – Графическое отображение ТТ (трансформатора тока).

Обозначение измерительных приборов и радиодеталей

Краткий обзор УГО данных электронных компонентов показан ниже. Тем, кто хочет более широко ознакомиться с этой информацией рекомендуем просмотреть ГОСТы 2.729 68 и 2.730 73.


Примеры условных графических обозначений электронных компонентов и измерительных приборов

Описание обозначений:

  1. Счетчик электроэнергии.
  2. Изображение амперметра.
  3. Прибор для измерения напряжения сети.
  4. Термодатчик.
  5. Резистор с постоянным номиналом.
  6. Переменный резистор.
  7. Конденсатор (общее обозначение).
  8. Электролитическая емкость.
  9. Обозначение диода.
  10. Светодиод.
  11. Изображение диодной оптопары.
  12. УГО транзистора (в данном случае npn).
  13. Обозначение предохранителя.

УГО осветительных приборов

Рассмотрим, как на принципиальной схеме отображаются электрические лампы.


Описание обозначений:

  • А – Общее изображение ламп накаливания (ЛН).
  • В — ЛН в качестве сигнализатора.
  • С – Типовое обозначение газоразрядных ламп.
  • D – Газоразрядный источник света повышенного давления (на рисунке приведен пример исполнения с двумя электродами)

Обозначение элементов в монтажной схеме электропроводки

Завершая тему графических обозначений, приведем примеры отображения розеток и выключателей.


Как изображаются розетки других типов, несложной найти в нормативных документах, которые доступны в сети.



Содержание:

Для того чтобы правильно прочитать и понять, что означает та или иная схема или чертеж, связанные с электричеством, необходимо знать, как расшифровываются изображенные на них значки и символы. Большое количество информации содержат буквенные обозначения элементов в электрических схемах, определяемые различными нормативными документами. Все они отображаются латинскими символами в виде одной или двух букв.

Однобуквенная символика элементов

Буквенные коды, соответствующие отдельным видам элементов, наиболее широко применяющихся в электрических схемах, объединяются в группы, обозначаемые одним символом. Буквенные обозначения соответствуют ГОСТу 2.710-81. Например, буква «А» относится к группе «Устройства», состоящей из лазеров, усилителей, приборов телеуправления и других.

Точно так же расшифровывается группа, обозначаемых символом «В». Она состоит из устройств, преобразующих неэлектрические величины в электрические, куда не входят генераторы и источники питания. Эта группа дополняется аналоговыми или многоразрядными преобразователями, а также датчиками для указаний или измерений. Сами компоненты, входящие в группу, представлены микрофонами, громкоговорителями, звукоснимателями, детекторами ионизирующих излучений, термоэлектрическими чувствительными элементами и т.д.

Все буквенные обозначения, соответствующие наиболее распространенным элементам, для удобства пользования объединены в специальную таблицу:

Первый буквенный символ, обязательный для отражения в маркировке

Группа основных видов элементов и приборов

Элементы, входящие в состав группы (наиболее характерные примеры)

Устройства

Лазеры, мазеры, приборы телеуправления, усилители.

Аппаратура для преобразования неэлектрических величин в электрические (без генераторов и источников питания), аналоговые и многозарядные преобразователи, датчики для указаний или измерений

Микрофоны, громкоговорители, звукосниматели, детекторы ионизирующих излучений, чувствительные термоэлектрические элементы.

Конденсаторы

Микросборки, интегральные схемы

Интегральные схемы цифровые и аналоговые, устройства памяти и задержки, логические элементы.

Разные элементы

Различные виды осветительных устройств и нагревательных элементов.

Обозначение предохранителя на схеме, разрядников, защитных устройств

Плавкие предохранители, разрядники, дискретные элементы защиты по току и напряжению.

Источники питания, генераторы, кварцевые осцилляторы

Аккумуляторные батареи, источники питания на электрохимической м электротермической основе.

Устройства для сигналов и индикации

Индикаторы, приборы световой и звуковой сигнализации

Контакторы, реле, пускатели

Реле напряжения и тока, реле времени, электротепловые реле, магнитные пускатели, контакторы.

Дроссели, катушки индуктивности

Дроссели в люминесцентном освещении.

Двигатели

Двигатели постоянного и переменного тока.

Измерительные приборы и оборудование

Счетчики, часы, показывающие, регистрирующие и измерительные приборы.

Силовые автоматические выключатели, короткозамыкатели, разъединители.

Резисторы

Счетчики импульсов

Частотометры

Счетчики активной энергии

Счетчики реактивной энергии

Регистрирующие приборы

Измерители времени действия, часы

Вольтметры

Ваттметры

Выключатели и разъединители в силовых цепях

Автоматические выключатели

Короткозамыкатели

Разъединители

Резисторы

Терморезисторы

Потенциометры

Шунты измерительные

Варисторы

Коммутационные устройства в цепях измерения, управления и сигнализации

Выключатели и переключатели

Выключатели кнопочные

Выключатели автоматические

Выключатели, срабатывающие под действием различных факторов:

От уровня

От давления

От положения (путевые)

От частоты вращения

От температуры

Трансформаторы, автотрансформаторы

Трансформаторы тока

Электромагнитные стабилизаторы

Трансформаторы напряжения

Устройства связи, преобразователи неэлектрических величин в электрические

Модуляторы

Демодуляторы

Дискриминаторы

Генераторы частоты, инверторы, преобразователи частоты

Приборы полупроводниковые и электровакуумные

Диоды, стабилитроны

Электровакуумные приборы

Транзисторы

Тиристоры

Антенны, линии и элементы СВЧ

Ответвители

Короткозамыкатели

Трансформаторы, фазовращатели

Аттенюаторы

Контактные соединения

Скользящие контакты, токосъемники

Разборные соединения

Высокочастотные соединители

Механические устройства с электромагнитным приводом

Электромагниты

Тормоза с электромагнитными приводами

Муфты с электромагнитными приводами

Электромагнитные патроны или плиты

Ограничители, устройства оконечные, фильтры

Ограничители

Кварцевые фильтры

Кроме того, в ГОСТе 2.710-81 определены специальные символы для обозначения каждого элемента.

Условные графические обозначения электронных компонентов в схемах

Чтение схем невозможно без знания условных графических и буквенных обозначений элементов. Большая их часть стандартизована и описана в нормативных документах. Большая их часть была издана еще в прошлом веке а новый стандарт был принят только один, в 2011 году (ГОСТ 2-702-2011 ЕСКД. Правила выполнения электрических схем), так что иногда новая элементная база обозначается по принципу «как кто придумал». И в этом сложность чтения схем новых устройств. Но, в основном, условные обозначения в электрических схемах описаны и хорошо знакомы многим.

На схемах используют часто два типа обозначений: графические и буквенные, также часто проставляют номиналы. По этим данным многие сразу могут сказать как работает схема. Этот навык развивается годами практики, а для начала надо уяснить и запомнить условные обозначения в электрических схемах. Потом, зная работу каждого элемента, можно представить себе конечный результат работы устройства.

Для составления и чтения различных схем обычно требуются разные элементы. Типов схем есть много, но в электрике обычно используются:


Есть еще много других видов электрических схем, но в домашней практике они не используются. Исключение — трасса прохождения кабелей по участку, подвод электричества к дому. Этот тип документа точно понадобится и будет полезным, но это больше план, чем схема.

Базовые изображения и функциональные признаки

Коммутационные устройства (выключатели, контакторы и т.д.) построены на контактах различной механики. Есть замыкающий, размыкающий, переключающий контакты. Замыкающий контакт в нормальном состоянии разомкнут, при переводе его в рабочее состояние цепь замыкается. Размыкающий контакт в нормальном состоянии замкнут, а при определенных условиях он срабатывает, размыкая цепь.

Переключающий контакт бывает двух и трех позиционным. В первом случае работает то одна цепь, то другая. Во втором есть нейтральное положение.

Кроме того, контакты могут выполнять разные функции: контактора, разъединителя, выключателя и т.п. Все они также имеют условное обозначение и наносятся на соответствующие контакты. Есть функции, которые выполняют только подвижные контакты. Они приведены на фото ниже.

Основные функции могут выполнять только неподвижные контакты.

Условные обозначения однолинейных схем

Как уже говорили, на однолинейных схемах указывается только силовая часть: УЗО, автоматы, дифавтоматы, розетки, рубильники, переключатели и т.д. и связи между ними. Обозначения этих условных элементов могут использоваться в схемах электрических щитов.

Основная особенность графических условных обозначений в электросхемах в том, что сходные по принципу действия устройства отличаются какой-то мелочью. Например, автомат (автоматический выключатель) и рубильник отличаются лишь двумя мелкими деталями — наличием/отсутствием прямоугольника на контакте и формой значка на неподвижном контакте, которые отображают функции данных контактов. Контактор от обозначения рубильника отличает только форма значка на неподвижном контакте. Совсем небольшая разница, а устройство и его функции другие. Ко всем этим мелочам надо присматриваться и запоминать.

Также небольшая разница между условными обозначениями УЗО и дифференциального автомата. Она тоже только в функциях подвижных и неподвижных контактов.

Примерно так же обстоит дело и с катушками реле и контакторов. Выглядят они как прямоугольник с небольшими графическими дополнениями.

В данном случае запомнить проще, так как есть довольно серьезные отличия во внешнем виде дополнительных значков. С фотореле так совсем просто — лучи солнца ассоциируются со стрелками. Импульсное реле — тоже довольно легко отличить по характерной форме знака.

Немного проще с лампами и соединениями. Они имеют разные «картинки». Разъемное соединение (типа розетка/вилка или гнездо/штепсель) выглядит как две скобочки, а разборное (типа клеммной колодки) — кружочки. Причем количество пар галочек или кружочков обозначает количество проводов.

Изображение шин и проводов

В любой схеме приличествуют связи и в большинстве своем они выполнены проводами. Некоторые связи представляют собой шины — более мощные проводниковые элементы, от которых могут отходить отводы. Провода обозначаются тонкой линией, а места ответвлений/соединений — точками. Если точек нет — это не соединение, а пересечение (без электрического соединения).

Есть отдельные изображения для шин, но они используются в том случае, если надо графически их отделить от линий связи, проводов и кабелей.

На монтажных схемах часто необходимо обозначить не только как проходит кабель или провод, но и его характеристики или способ укладки. Все это также отображается графически. Для чтения чертежей это тоже необходимая информация.

Как изображают выключатели, переключатели, розетки

На некоторые виды этого оборудования утвержденных стандартами изображений нет. Так, без обозначения остались диммеры (светорегуляторы) и кнопочные выключатели.

Зато все другие типы выключателей имеют свои условные обозначения в электрических схемах. Они бывают открытой и скрытой установки, соответственно, групп значков тоже две. Различие — положение черты на изображении клавиши. Чтобы на схеме понимать о каком именно типе выключателя идет речь, это надо помнить.

Есть отдельные обозначения для двухклавишных и трехклавшных выключателей. В документации они называются «сдвоенные» и «строенные» соответственно. Есть отличия и для корпусов с разной степенью защиты. В помещения с нормальными условиями эксплуатации ставят выключатели с IP20, может до IP23. Во влажных комнатах (ванная комната, бассейн) или на улице степень защиты должна быть не ниже IP44. Их изображения отличаются тем, что кружки закрашены. Так что их отличить просто.

Есть отдельные изображения для переключателей. Это выключатели, которые позволяют управлять включением/выключением света из двух точек (есть и из трех, но без стандартных изображений).

В обозначениях розеток и розеточных групп наблюдается та же тенденция: есть одинарные, сдвоенные розетки, есть группы из нескольких штук. Изделия для помещений с нормальными условиями эксплуатации (IP от 20 до 23) имеют неокрашенную середину, для влажных с корпусом повышенной защиты (IP44 и выше) середина тонируется темным цветом.

Условные обозначения в электрических схемах: розетки разного типа установки (открытого, скрытого)

Поняв логику обозначения и запомнив некоторые исходные данные (чем отличается условное изображение розетки открытой и скрытой установки, например), через некоторое время вы уверенно сможете ориентироваться в чертежах и схемах.

Светильники на схемах

В этом разделе описаны условные обозначения в электрических схемах различных ламп и светильников. Тут ситуация с обозначениями новой элементной базы лучше: есть даже знаки для светодиодных ламп и светильников, компактных люминесцентных ламп (экономок). Неплохо также что изображения ламп разного типа значительно отличаются — перепутать сложно. Например, светильники с лампами накаливания изображают в виде кружка, с длинными линейными люминесцентными — длинного узкого прямоугольника. Не очень велика разница в изображении линейной лампы люминесцентного типа и светодиодного — только черточки на концах — но и тут можно запомнить.

В стандарте есть даже условные обозначения в электрических схемах для потолочного и подвесного светильника (патрона). Они тоже имеют довольно необычную форму — круги малого диаметра с черточками. В общем, в этом разделе ориентироваться легче чем в других.

Элементы принципиальных электрических схем

Принципиальные схемы устройств содержат другую элементную базу. Линии связи, клеммы, разъемы, лампочки изображаются также, но, кроме того, присутствует большое количество радиоэлементов: резисторов, емкостей, предохранителей, диодов, тиристоров, светодиодов. Большая часть условных обозначений в электрических схемах этой элементной базы приведена на рисунках ниже.

Более редкие придется искать отдельно. Но в большинство схем содержит эти элементы.

Буквенные условные обозначения в электрических схемах

Кроме графических изображений элементы на схемах подписываются. Это также помогает читать схемы. Рядом с буквенным обозначением элемента часто стоит его порядковый номер. Это сделано для того чтобы потом легко было найти в спецификации тип и параметры.

В таблице выше приведены международные обозначения. Есть и отечественный стандарт — ГОСТ 7624-55. Выдержки оттуда с таблице ниже.

Электротехнические обозначения на схемах. Условные обозначения на электрических схемах по гост: буквенные, графические

Уметь читать специальные электрические обозначения должен уметь каждый человек, который имеет отношение к электричеству. Обозначений существует огромное количество, но знать их нужно всегда, или просто изредка подглядывать в нашу статью. Здесь мы разберем, какие существуют условные обозначения в электрических схемах гост, и разберем все возможные варианты.

Какие бывают условные обозначения в электрических схемах

Всего существует две основных группы обозначений на схемах, они используются повсеместно, поэтому их стоит знать. Ведь по-другому вы не узнаете, как обозначаются: выключатели, светильники, розетки и другие элементы цепи на вашей электрической схеме. Если вы только думаете, составить схему, тогда обязательно используйте только правильные обозначения, ведь рано или поздно вы к ней вернетесь, если разобрать не сможете – будет очень плохо.

Если говорить за два вида электрических обозначений, то стоит назвать:

  1. Графические.
  2. Буквенные.

Графические обозначения в электрических схемах

Изначально мы поговорим об графических обозначениях электрических элементов, которые используются в стандартных схемах. Чтобы вам проще было вникнуть в суть, мы решили сделать для вас подборку в виде таблиц, которые мы встретили в интернете.

Первая таблица означает схемы: электрических коробок, щитов, пультов и шкафов на стандартных электросхемах.

Вот так обозначаются розетки и выключатели, более подробно вы найдете в статье, обозначение розеток.

Если говорить за элементы освещение обозначения, то по ГОСТу они обозначаются образом:

Следующим образом обозначаются трансформаторы и генераторы.

Если говорить за более серьезные схемы, то можно сразу назвать различные электродвигатели, элементы на них обозначаются вот так:

Такие обозначения важно будет узнать начинающим электрикам, ведь следующим образом выглядит контур заземления и силовая линия.

Опытные электрики всегда заинтересуются сложными графическими электрическими обозначениями в виде контактных соединений. Таким образом, обозначаются устройства на электросхемах по ГОСТУ.

Вот так выглядит радиоэлементы, сюда можно отнести: диоды, резисторы, транзисторы и прочее.

Итак, мы с вами разобрали все графические обозначения на электрических схемах, которые применяются в силовых сетях для освещения. Как вы могли заметить, обозначений много, но запомнить их всех можно, с электродвигателями ситуация немного сложней, но такие обозначения используют только профессиональные электрики. Мы рекомендуем сохранить эту страницу, она станет для вас спасением рано или поздно.

Буквенное обозначения в электрических схемах

Мы уже разбирали похожую статью: расшифровка кабелей и проводов, если вы читали эту статью, вам будет проще разобраться со всеми буквенными обозначениями. Согласно ГОСТ 7624-54 буквенное обозначение элементов на электрических схемах выглядит вот так:

  1. КВ – конечный выключатель.
  2. ПВ – путевой выключатель.
  3. ДО – двигатель насоса охлаждения.
  4. ДП – двигатель подач.
  5. ДШ – двигатель шпинделя.
  6. ДБХ – двигатель быстрых ходов.
  7. ДГ – главный двигатель.
  8. КК – командо-контроллер.
  9. КУ – кнопкауправления.
  10. Напряжение, мощность, время, указательное, реле тока, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.

Радиотехнические элементы на электронных схемах обозначаются следующим образом.

Вот мы с вами и разобрали, какие существуют электрически обозначения на схемах, посмотрите еще вот такое интересное видео, оно поможет понять некоторые особенности.

При проведении электротехнических работ каждый человек, так или иначе, сталкивается с условными обозначениями, которые есть в любой электрической схеме. Эти схемы очень разнообразны, с различными функциями, однако, все графические условные обозначения приведены к единым формам и во всех схемах соответствуют одним и тем же элементам.

Основные условные обозначения в электрических схемах ГОСТ, отображены в таблицах






В настоящее время в электротехнике и радиоэлектронике применяются не только отечественные элементы, но и продукция, производимая иностранными фирмами. Импортные электрорадиоэлементы составляют огромный ассортимент. Они, в обязательном порядке, отображаются на всех чертежах в виде условных обозначений. На них определяются не только значения основных электрических параметров, но и полный их перечень, входящих в то или иное устройство, а также, взаимосвязь между ними.

Чтобы прочитать и понять содержание электрической схемы

Нужно хорошо изучить все элементы, входящие в ее состав и принцип действия устройства в целом. Обычно, вся информация находится либо в справочниках, либо в прилагаемой к схеме спецификации. Позиционные обозначения характеризуют взаимосвязь элементов, входящих в комплект устройства, с их обозначениями на схеме. Для того, чтобы обозначить графически тот или иной электрорадиоэлемент, применяют стандартную геометрическую символику, где каждое изделие изображается отдельно, или в совокупности с другими. От сочетания символов между собой во многом зависит значение каждого отдельного образа.

На каждой схеме отображаются

Соединения между отдельными элементами и проводниками. В таких случаях немаловажное значение имеет стандартное обозначение одинаковых комплектующих деталей и элементов. Для этого и существуют позиционные обозначения, где типы элементов, особенности их конструкции и цифровые значения отображаются в буквенном выражении. Элементы, применяемые в общем порядке, обозначаются на чертежах, как квалификационные, характеризующие ток и напряжение, способы регулирования, виды соединений, формы импульсов, электронную связь и другие.

Электрическая схема — это текст, описывающий определенными символами содержание и работу электротехнического устройства или комплекса устройств, что позволяет в краткой форме выразить этот текст.

Для того чтобы прочесть любой текст, необходимо знать алфавит и правила чтения. Так, для чтения схем следует знать символы — условные обозначения и правила расшифровки их сочетаний.

Основу любой электрической схемы представляют условные графические обозначения различных элементов и устройств, а также связей между ними. Язык современных схем подчеркивает в символах подчеркивает основные функции, которые выполняет в схеме изображенных элемент. Все правильные условные графические обозначения элементов электрических схем и их отдельных частей приводятся в виде таблиц в стандартах.

Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по специальной системе, которая предусмотрена стандартом, дает возможность легко изобразить все, что требуется: различные электрические аппараты, приборы, электрические машины, линии механической и электрической связей, виды соединений обмоток, род тока, характер и способы регулирования и т. п.

Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Так, например, существует три типа контактов — замыкающий, размыкающий и переключающий. Условные обозначения отражают только основную функцию контакта — замыкание и размыкание цепи. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта. Дополнительные знаки позволяют найти на схеме контакты кнопок управления, реле времени, путевых выключателей и т.д.

Отдельные элементы на электрических схемах имеют не одно, а несколько вариантов обозначения на схемах. Так, например, существует несколько равноценных вариантов обозначения переключающих контактов, а также несколько стандартных обозначений обмоток трансформатора. Каждое из обозначений можно применять в определенных случаях.

Если в стандарте нет нужного обозначения, то его составляют, исходя из принципа действия элемента, обозначений, принятых для аналогических типов аппаратов, приборов, машин с соблюдением принципов построения, обусловленных стандартом.


Стандарты. Условные графические обозначения на электрических схемах и схемах автоматизации:

В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.

Но начнем немного издалека…
Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.

Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.

Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?

«Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»

Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».

Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.

В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.

Виды и типы электрических схем

Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению».
В соответствии с этим ГОСТ, схемы разделяются на 10 видов:

  1. Схема электрическая
  2. Схема гидравлическая
  3. Схема пневматическая
  4. Схема газовая
  5. Схема кинематическая
  6. Схема вакуумная
  7. Схема оптическая
  8. Схема энергетическая
  9. Схема деления
  10. Схема комбинированная

Виды схем подразделяются на восемь типов:

  1. Схема структурная
  2. Схема функциональная
  3. Схема принципиальная (полная)
  4. Схема соединений (монтажная)
  5. Схема подключения
  6. Схема общая
  7. Схема расположения
  8. Схема объединенная

Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.

ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.

ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:


с использованием девяти функциональных признаков:

Наименование Изображение
1. Функция контактора
2. Функция выключателя
3. Функция разъединителя
4. Функция выключателя-разъединителя
5. Автоматическое срабатывание
6. Функция путевого или концевого выключателя
7. Самовозврат
8. Отсутствие самовозврата
9. Дугогашение
Примечание: Обозначения, приведенные в пп. 1 — 4, 7 — 9, помещают на неподвижных контактах, а обозначения в пп. 5 и 6 — на подвижных контактах.

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

Наименование Изображение
Автоматический выключатель (автомат)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт размыкающий с замедлением, действующим при срабатывании
Контакт размыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):
гнездо
штырь
Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

Наименование Изображение
Линия электрической связи, провода, кабели, шины, линия групповой связи
Защитный проводник (PE) допускается изображать штрихпунктирной линией
Графическое разветвление (слияние) линий групповой связи
Пересечение линий электрической связи, линий групповой связи электрически не соединенных проводов, кабелей, шин, электрически не соединенных
Линия электрической связи с одним ответвлением
Линия электрической связи с двумя ответвлениями
Шина (если необходимо графически отделить от изображения линии электрической связи)
Ответвление шины
Шины, графически пересекающиеся и электрически не соединенные
Отводы (отпайки) от шины

Буквенные обозначения в электрических схемах

Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».

Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.

Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.

Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:

Наименование Обозначение
Автоматический выключатель в силовых цепяхQF
Автоматический выключатель в цепях управленияSF
Автоматический выключатель с дифференциальной защитой (дифавтомат)QFD
Выключатель нагрузки (рубильник)QS
Устройство защитного отключения (УЗО)QSD
КонтакторKM
Тепловое релеF, KK
Реле времениKT
Реле напряженияKV
ФоторелеKL
Импульсное релеKI
Разрядник, ОПНFV
Плавкий предохранительFU
Трансформатор токаTA
Трансформатор напряженияTV
Частотный преобразовательUZ
АмперметрPA
ВольтметрPV
ВаттметрPW
ЧастотометрPF
Счетчик активной энергииPI
Счетчик реактивной энергииPK
ФотоэлементBL
Нагревательный элементEK
Лампа осветительнаяEL
Прибор световой индикации (лампочка)HL
Штепсельный разъем (розетка)XS
Выключатель или переключатель в цепях управленияSA
Выключатель кнопочный в цепях управленияSB
КлеммыXT

Изображение электрооборудования на планах

Хотя ГОСТ 2.701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения» , при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.

Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Наименование Изображение
Устройство электротехническое. Общее изображение
Устройство электрическое, в т.ч. с двигателем
Устройство с генератором
Двигатель-генератор
Комплектное трансформаторное устройство с одним трансформатором
Комплектное трансформаторное устройство с несколькими трансформаторами
Установка комплектная конденсаторная
Установка комплектная преобразовательная
Батарея аккумуляторная
Устройство электронагревательное. Общее обозначение

Условные графические обозначения линий проводок и токопроводов

Наименование Изображение
Линия проводки с указанием сведений (о роде тока, напряжения, материале, способе прокладки, отметки и пр.)
Линия проводки с указанием количества проводников (количество проводников указывают засечками; при количестве проводников более трех, вместо засечек используют цифры)

К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.

Проектировщики решают эту проблему по-разному:

  • большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
  • продвинутые пользователи AutoCAD создают собственные типы линий.

Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.

Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.

Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.

Условные графические изображения шин и шинопроводов

Наименование Изображение
Примечание. Изображение места крепления шинопровода должно соответствовать его проектному положению

Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.

Условные графические изображения коробок, шкафов, щитов и пультов

Наименование Изображение

Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.

Условные графические обозначения выключателей, переключателей

ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.

Наименование Изображение
Выключатель для открытой установки со степенью защиты от IP20 до IP23
однополюсный
однополюсный сдвоенный
однополюсный строенный
двухполюсный
трехполюсный
Выключатель для скрытой установки со степенью защиты от IP20 до IP23
однополюсный
однополюсный сдвоенный
однополюсный строенный
двухполюсный
Выключатель для открытой установки со степенью защиты не ниже IP44
однополюсный
двухполюсный
трехполюсный
Переключатель на два направления без нулевого положения со степенью защиты от IP20 до IP23
открытой установки
скрытой установки

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.

Условные графические обозначения штепсельных розеток

Наименование Изображение
Штепсельная розетка открытой установки со степенью защиты от IP20 до IP23
двухполюсная
двухполюсная сдвоенная
Штепсельная розетка скрытой установки со степенью защиты от IP20 до IP23
двухполюсная
двухполюсная сдвоенная
двухполюсная с защитным контактом
двухполюсная сдвоенная с защитным контактом
трехполюсная с защитным контактом
блок из нескольких компьютерных розеток (цифра указывает число розеток в блоке)
блок из нескольких бытовых розеток (цифра указывает число розеток в блоке)
Штепсельная розетка со степенью защиты не ниже IP44
двухполюсная
двухполюсная сдвоенная
двухполюсная с защитным контактом
двухполюсная сдвоенная с защитным контактом
трехполюсная с защитным контактом
блок из нескольких компьютерных розеток (цифра указывает число розеток в блоке)
блок из нескольких бытовых розеток (цифра указывает число розеток в блоке)

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.

Чтобы понять, что конкретно нарисовано на схеме или чертеже, необходимо знать расшифровку тех значков, которые на ней есть. Это распознавание еще называют чтением чертежей. А чтоб облегчить это занятие почти все элементы имеют свои условные значки. Почти, потому что стандарты давно не обновлялись и некоторые элементы рисуют каждый как может. Но, в большинстве своем, условные обозначения в электрических схемах есть в нормативны документах.

Условные обозначения в электрических схемах: лампы,трансформаторы, измерительные приборы, основная элементная база

Нормативная база

Разновидностей электрических схем насчитывается около десятка, количество различных элементов, которые могут там встречаться, исчисляется десятками если не сотнями. Чтобы облегчить распознавание этих элементов, введены единые условные обозначения в электрических схемах. Все правила прописаны в ГОСТах. Этих нормативов немало, но основная информация есть в следующих стандартах:


Изучение ГОСТов дело полезное, но требующее времени, которое не у всех есть в достаточном количестве. Потому в статье приведем условные обозначения в электрических схемах — основную элементную базу для создания чертежей и схем электропроводки, принципиальных схем устройств.

Некоторые специалисты внимательно посмотрев на схему, могут сказать что это и как оно работает. Некоторые даже могут сразу выдать возможные проблемы, которые могут возникнуть при эксплуатации. Все просто — они хороша знают схемотехнику и элементную базу, а также хорошо ориентируются в условных обозначениях элементов схем. Такой навык нарабатывается годами, а, для «чайников», важно запомнить для начала наиболее распространенные.


Электрические щиты, шкафы, коробки

На схемах электроснабжения дома или квартиры обязательно будет присутствовать обозначение или шкафа. В квартирах, в основном устанавливается там оконечное устройство, так как проводка дальше не идет. В домах могут запроектировать установку разветвительного электрошкафа — если из него будет идти трасса на освещение других построек, находящихся на некотором расстоянии от дома — бани, гостевого дома. Эти другие обозначения есть на следующей картинке.


Если говорить об изображениях «начинки» электрических щитков, она тоже стандартизована. Есть условные обозначения УЗО, автоматических выключателей, кнопок, трансформаторов тока и напряжения и некоторых других элементов. Они приведены следующей таблице (в таблице две страницы, листайте нажав на слово «Следующая»)

Элементная база для схем электропроводки

При составлении или чтении схемы пригодятся также обозначения проводов, клемм, заземления, нуля и т.д. Это то, что просто необходимо начинающему электрику или для того чтобы понять, что же изображено на чертеже и в какой последовательности соединены ее элементы.

Пример использования приведенных выше графических изображений есть на следующей схеме. Благодаря буквенным обозначениям все и без графики понятно, но дублирование информации в схемах никогда лишним не было.


Изображение розеток

На схеме электропроводки должны быть отмечены места установки розеток и выключателей. Типов розеток много — на 220 В, на 380 в, скрытого и открытого типа установки, с разным количеством «посадочных» мест, влагозащищенные и т.д. Приводить обозначение каждой — слишком длинно и ни к чему. Важно запомнить как изображаются основные группы, а количество групп контактов определяется по штрихам.


Обозначение розеток на чертежах

Розетки для однофазной сети 220 В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками. Количество отрезков — количество розеток на одном корпусе (на фото ниже иллюстрация). Если в розетку можно включить только одну вилку — вверх рисуют один отрезок, если два — два, и т.д.


Если посмотрите на изображения внимательно, обратите внимание, что условное изображение, которое находится справа, не имеет горизонтальной черты, которая отделяет две части значка. Эта черта указывает на то, что розетка скрытого монтажа, то есть под нее необходимо в стене сделать отверстие, установить подрозетник и т.д. Вариант справа — для открытого монтажа. На стену крепится токонепроводящая подложка, на нее сама розетка.

Также обратите внимание, что нижняя часть левого схематического изображения перечеркнута вертикальной линией. Так обозначают наличие защитного контакта, к которому подводится заземление. Установка розеток с заземлением обязательна при включении сложной бытовой техники типа стиральной или , духовки и т.д.


Ни с чем не перепутаешь условное обозначение трехфазной розетки (на 380 В). Количество торчащих вверх отрезков равно количеству проводников, которые к данному устройству подключаются — три фазы, ноль и земля. Итого пять.

Бывает, что нижняя часть изображения закрашена черным (темным). Это обозначает что розетка влагозащищенная. Такие ставят на улице, в помещениях с повышенной влажностью (бани, бассейны и т.д.).

Отображение выключателей

Схематическое обозначение выключателей выглядит как небольшого размера кружок с одним или несколькими Г- или Т- образными ответвлениями. Отводы в виде буквы «Г» обозначают выключатель открытого монтажа, с виде буквы «Т» — скрытого монтажа. Количество отводов отображает количество клавиш на этом устройстве.


Кроме обычных могут стоять — для возможности включения/выключения одного источника света из нескольких точек. К такой же небольшой окружности с противоположных сторон пририсовывают две буквы «Г». Так обозначается одноклавишный проходной переключатель.


В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.

Лампы и светильники

Свои обозначения имеют лампы. Причем отличаются лампы дневного света (люминесцентные) и лампы накаливания. На схемах отображается даже форма и размеры светильников. В данном случае надо только запомнить как выглядит на схеме каждый из типов ламп.


Радиоэлементы

При прочтении принципиальных схем устройств, необходимо знать условные обозначения диодов, резисторов, и других подобных элементов.


Знание условных графических элементов поможет вам прочесть практически любую схему — какого-нибудь устройства или электропроводки. Номиналы требуемых деталей иногда проставляются рядом с изображением, но в больших многоэлементных схемах они прописываются в отдельной таблице. В ней стоят буквенные обозначения элементов схемы и номиналы.

Буквенные обозначения

Кроме того, что элементы на схемах имеют условные графические названия, они имеют буквенные обозначения, причем тоже стандартизованные (ГОСТ 7624-55).

Название элемента электрической схемыБуквенное обозначение
1Выключатель, контролер, переключательВ
2ЭлектрогенераторГ
3ДиодД
4ВыпрямительВп
5Звуковая сигнализация (звонок, сирена)Зв
6КнопкаКн
7Лампа накаливанияЛ
8Электрический двигательМ
9ПредохранительПр
10Контактор, магнитный пускательК
11РелеР
12Трансформатор (автотрансформатор)Тр
13Штепсельный разъемШ
14ЭлектромагнитЭм
15РезисторR
16КонденсаторС
17Катушка индуктивностиL
18Кнопка управленияКу
19Конечный выключательКв
20ДроссельДр
21ТелефонТ
22МикрофонМк
23ГромкоговорительГр
24Батарея (гальванический элемент)Б
25Главный двигательДг
26Двигатель насоса охлажденияДо

Обратите внимание, что в большинстве случаев используются русские буквы, но резистор, конденсатор и катушка индуктивности обозначаются латинскими буквами.

Есть одна тонкость в обозначении реле. Они бывают разного типа, соответственно маркируются:

  • реле тока — РТ;
  • мощности — РМ;
  • напряжения — РН;
  • времени — РВ;
  • сопротивления — РС;
  • указательное — РУ;
  • промежуточное — РП;
  • газовое — РГ;
  • с выдержкой времени — РТВ.

В основном, это только наиболее условные обозначения в электрических схемах. Но большую часть чертежей и планов вы теперь сможете понять. Если потребуется знать изображения более редких элементов, изучайте ГОСТы.

Расшифровка элементов в электрических схемах. Условные графические и буквенные обозначения электрорадиоэлементов

Электрическая схема – это один из видов технических чертежей, на котором указываются различные электрические элементы в виде условных обозначений. Каждому элементу присвоено своё обозначение.

Все условные (условно-графические) обозначения на электрических схемах состоят из простых геометрических фигур и линий. Это окружности, квадраты, прямоугольники, треугольники, простые линии, пунктирные линии и т.д. Обозначение каждого электрического элемента состоит из графической части и буквенно-цифровой.

Благодаря огромному количеству разнообразных электрических элементов появляется возможность создавать очень подробные электрические схемы, понятные практически каждому специалисту в электрической области.

Каждый элемент на электрической схеме должен выполняться в соответствие с ГОСТ. Т.е. кроме правильного отображения графического изображения на электрической схеме должны быть выдержаны все стандартные размеры каждого элемента, толщина линий и т.д.

Существует несколько основных видов электрических схем. Это схема однолинейная, принципиальная, монтажная (схема подключений). Также схемы бывают общего вида – структурные, функциональные. У каждого вида своё назначение. Один и тот же элемент на разных схемах может обозначаться и одинаково, и по-разному.

Основное назначение однолинейной схемы – графическое отображение системы электрического питания (электроснабжение объекта, разводка электричества в квартире и т.д.). Проще говоря, на однолинейной схеме изображается силовая часть электроустановки. По названию можно понять, что однолинейная схема выполняется в виде одной линии. Т.е. электрическое питание (и однофазное, и трёхфазное), подводимое к каждому потребителю, обозначается одинарной линией.

Чтобы указать количество фаз, на графической линии используются специальные засечки. Одна засечка обозначает, что электрическое питание однофазное, три засечки – что питание трёхфазное.

Кроме одинарной линии используются обозначения защитных и коммутационных аппаратов. К первым аппаратам относятся высоковольтные выключатели (масляные, воздушные, элегазовые, вакуумные), автоматические выключатели, устройства защитного отключения, дифференциальные автоматы, предохранители, выключатели нагрузки. Ко вторым относятся разъединители, контакторы, магнитные пускатели.

Высоковольтные выключатели на однолинейных схемах изображаются в виде небольших квадратов. Что касается автоматических выключателей, УЗО, дифференциальных автоматов, контакторов, пускателей и другой защитной и коммутационной аппаратуры, то они изображаются в виде контакта и некоторых поясняющих графических дополнений, в зависимости от аппарата.

Монтажная схема (схема соединения, подключения, расположения) используется для непосредственного производства электрических работ. Т.е. это рабочие чертежи, используя которые, выполняется монтаж и подключение электрооборудования. Также по монтажным схемам собирают отдельные электрические устройства (электрические шкафы, электрические щиты, пульты управления, и т.д.).


На монтажных схемах изображают все проводные соединения как между отдельными аппаратами (автоматические выключатели, пускатели и др.), так и между разными видами электрооборудования (электрические шкафы, щитки и т.д.). Для правильного подключения проводных соединений на монтажной схеме изображаются электрические клеммники, выводы электрических аппаратов, марка и сечение электрических кабелей, нумерация и буквенное обозначение отдельных проводов.

Схема электрическая принципиальная – наиболее полная схема со всеми электрическими элементами, связями, буквенными обозначениями, техническими характеристиками аппаратов и оборудования. По принципиальной схеме выполняют другие электрические схемы (монтажные, однолинейные, схемы расположения оборудования и др.). На принципиальной схеме отображаются как цепи управления, так и силовая часть.

Цепи управления (оперативные цепи) – это кнопки, предохранители, катушки пускателей или контакторов, контакты промежуточных и других реле, контакты пускателей и контакторов, реле контроля фаз (напряжения) а также связи между этими и другими элементами.

На силовой части изображаются автоматические выключатели, силовые контакты пускателей и контакторов, электродвигатели и т.д.

Кроме самого графического изображения каждый элемент схемы снабжается буквенно-цифровым обозначением. Например, автоматический выключатель в силовой цепи обозначается QF. Если автоматов несколько, каждому присваивается свой номер: QF1, QF2, QF3 и т.д. Катушка (обмотка) пускателя и контактора обозначается KM. Если их несколько, нумерация аналогичная нумерации автоматов: KM1, KM2, KM3 и т.д.

В каждой принципиальной схеме, если есть какое-либо реле, то обязательно используется минимум один блокировочный контакт этого реле. Если в схеме присутствует промежуточное реле KL1, два контакта которого используются в оперативных цепях, то каждый контакт получает свой номер. Номер всегда начинается с номера самого реле, а далее идёт порядковый номер контакта. В данном случае получается KL1.1 и KL1.2. Точно также выполняются обозначения блок-контактов других реле, пускателей, контакторов, автоматов и т.д.

В схемах электрических принципиальных кроме электрических элементов очень часто используются и электронные обозначения. Это резисторы, конденсаторы, диоды, светодиоды, транзисторы, тиристоры и другие элементы. Каждый электронный элемент на схеме также имеет своё буквенное и цифровое обозначение. Например, резистор – это R (R1, R2, R3…). Конденсатор – C (C1, C2, C3…) и так по каждому элементу.

Кроме графического и буквенно-цифрового обозначения на некоторых электрических элементах указываются технические характеристики. Например, для автоматического выключателя это номинальный ток в амперах, ток срабатывания отсечки тоже в амперах. Для электродвигателя указывается мощность в киловаттах.

Для правильного и корректного составления электрических схем любого вида необходимо знать обозначения используемых элементов, государственные стандарты, правила оформления документации.

В этой статье мы рассмотрим обозначение радиоэлементов на схемах.

С чего начать чтение схем?

Для того, чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться.

До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш российский ГОСТ-вариант обозначения радиоэлементов

Изучаем простую схему

Ладно, ближе к делу. Давайте рассмотрим простую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:

Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.

Ну что же, давайте ее анализировать.

В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение . То есть вы должны понимать, какую основную функцию выполняет ваша схема . Это можно прочесть в описании к ней.

Как соединяются радиоэлементы в схеме

Итак, вроде бы определились с задачей этой схемы. Прямые линии – это провода, либо печатные проводники, по которым будет бежать электрический ток . Их задача – соединять радиоэлементы.


Точка, где соединяются три и более проводников, называется узлом . Можно сказать, в этом месте проводки спаиваются:


Если пристально вглядеться в схему, то можно заметить пересечение двух проводников


Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте провода не соединяются и они должны быть изолированы друг от друга . В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:

Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.

Если бы между ними было соединение, то мы бы увидели вот такую картину:

Буквенное обозначение радиоэлементов в схеме

Давайте еще раз рассмотрим нашу схему.

Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.


Итак, давайте первым делом разберемся с надписями. R – это значит . Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…

Как же обозначаются остальные радиоэлементы?

Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа , к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов :

А – это различные устройства (например, усилители)

В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся .

С – конденсаторы

D – схемы интегральные и различные модули

E – разные элементы, которые не попадают ни в одну группу

F – разрядники, предохранители, защитные устройства

H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации

K – реле и пускатели

L – катушки индуктивности и дроссели

M – двигатели

Р – приборы и измерительное оборудование

Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока

R – резисторы

S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения

T – трансформаторы и автотрансформаторы

U – преобразователи электрических величин в электрические, устройства связи

V – полупроводниковые приборы

W – линии и элементы сверхвысокой частоты, антенны

X – контактные соединения

Y – механические устройства с электромагнитным приводом

Z – оконечные устройства, фильтры, ограничители

Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента . Ниже приведены основные виды элементов вместе с буквой группы:

BD – детектор ионизирующих излучений

BE – сельсин-приемник

BL – фотоэлемент

BQ – пьезоэлемент

BR – датчик частоты вращения

BS – звукосниматель

BV – датчик скорости

BA – громкоговоритель

BB – магнитострикционный элемент

BK – тепловой датчик

BM – микрофон

BP – датчик давления

BC – сельсин датчик

DA – схема интегральная аналоговая

DD – схема интегральная цифровая, логический элемент

DS – устройство хранения информации

DT – устройство задержки

EL – лампа осветительная

EK – нагревательный элемент

FA – элемент защиты по току мгновенного действия

FP – элемент защиты по току инерционнго действия

FU – плавкий предохранитель

FV – элемент защиты по напряжению

GB – батарея

HG – символьный индикатор

HL – прибор световой сигнализации

HA – прибор звуковой сигнализации

KV – реле напряжения

KA – реле токовое

KK – реле электротепловое

KM – магнитный пускатель

KT – реле времени

PC – счетчик импульсов

PF – частотомер

PI – счетчик активной энергии

PR – омметр

PS – регистрирующий прибор

PV – вольтметр

PW – ваттметр

PA – амперметр

PK – счетчик реактивной энергии

PT – часы

QF

QS – разъединитель

RK – терморезистор

RP – потенциометр

RS – шунт измерительный

RU – варистор

SA – выключатель или переключатель

SB – выключатель кнопочный

SF – выключатель автоматический

SK – выключатели, срабатывающие от температуры

SL – выключатели, срабатывающие от уровня

SP – выключатели, срабатывающие от давления

SQ – выключатели, срабатывающие от положения

SR – выключатели, срабатывающие от частоты вращения

TV – трансформатор напряжения

TA – трансформатор тока

UB – модулятор

UI – дискриминатор

UR – демодулятор

UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель

VD – диод , стабилитрон

VL – прибор электровакуумный

VS – тиристор

VT

WA – антенна

WT – фазовращатель

WU – аттенюатор

XA – токосъемник, скользящий контакт

XP – штырь

XS – гнездо

XT – разборное соединение

XW – высокочастотный соединитель

YA – электромагнит

YB – тормоз с электромагнитным приводом

YC – муфта с электромагнитным приводом

YH – электромагнитная плита

ZQ – кварцевый фильтр

Графическое обозначение радиоэлементов в схеме

Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:

Резисторы и их виды


а ) общее обозначение

б ) мощностью рассеяния 0,125 Вт

в ) мощностью рассеяния 0,25 Вт

г ) мощностью рассеяния 0,5 Вт

д ) мощностью рассеяния 1 Вт

е ) мощностью рассеяния 2 Вт

ж ) мощностью рассеяния 5 Вт

з ) мощностью рассеяния 10 Вт

и ) мощностью рассеяния 50 Вт

Резисторы переменные


Терморезисторы


Тензорезисторы


Варисторы

Шунт

Конденсаторы

a ) общее обозначение конденсатора

б ) вариконд

в ) полярный конденсатор

г ) подстроечный конденсатор

д ) переменный конденсатор

Акустика

a ) головной телефон

б ) громкоговоритель (динамик)

в ) общее обозначение микрофона

г ) электретный микрофон

Диоды

а ) диодный мост

б ) общее обозначение диода

в ) стабилитрон

г ) двусторонний стабилитрон

д ) двунаправленный диод

е ) диод Шоттки

ж ) туннельный диод

з ) обращенный диод

и ) варикап

к ) светодиод

л ) фотодиод

м ) излучающий диод в оптроне

н ) принимающий излучение диод в оптроне

Измерители электрических величин

а ) амперметр

б ) вольтметр

в ) вольтамперметр

г ) омметр

д ) частотомер

е ) ваттметр

ж ) фарадометр

з ) осциллограф

Катушки индуктивности


а ) катушка индуктивности без сердечника

б ) катушка индуктивности с сердечником

в ) подстроечная катушка индуктивности

Трансформаторы

а ) общее обозначение трансформатора

б ) трансформатор с выводом из обмотки

в ) трансформатор тока

г ) трансформатор с двумя вторичными обмотками (может быть и больше)

д ) трехфазный трансформатор

Устройства коммутации


а ) замыкающий

б ) размыкающий

в ) размыкающий с возвратом (кнопка)

г ) замыкающий с возвратом (кнопка)

д ) переключающий

е ) геркон

Электромагнитное реле с разными группами контактов


Предохранители


а ) общее обозначение

б ) выделена сторона, которая остается под напряжением при перегорании предохранителя

в ) инерционный

г ) быстродействующий

д ) термическая катушка

е ) выключатель-разъединитель с плавким предохранителем

Тиристоры


Биполярный транзистор


Однопереходный транзистор


При проведении электротехнических работ каждый человек, так или иначе, сталкивается с условными обозначениями, которые есть в любой электрической схеме. Эти схемы очень разнообразны, с различными функциями, однако, все графические условные обозначения приведены к единым формам и во всех схемах соответствуют одним и тем же элементам.

Основные условные обозначения в электрических схемах ГОСТ, отображены в таблицах

В настоящее время в электротехнике и радиоэлектронике применяются не только отечественные элементы, но и продукция, производимая иностранными фирмами. Импортные электрорадиоэлементы составляют огромный ассортимент. Они, в обязательном порядке, отображаются на всех чертежах в виде условных обозначений. На них определяются не только значения основных электрических параметров, но и полный их перечень, входящих в то или иное устройство, а также, взаимосвязь между ними.

Чтобы прочитать и понять содержание электрической схемы

Нужно хорошо изучить все элементы, входящие в ее состав и принцип действия устройства в целом. Обычно, вся информация находится либо в справочниках, либо в прилагаемой к схеме спецификации. Позиционные обозначения характеризуют взаимосвязь элементов, входящих в комплект устройства, с их обозначениями на схеме. Для того, чтобы обозначить графически тот или иной электрорадиоэлемент, применяют стандартную геометрическую символику, где каждое изделие изображается отдельно, или в совокупности с другими. От сочетания символов между собой во многом зависит значение каждого отдельного образа.

На каждой схеме отображаются

Соединения между отдельными элементами и проводниками. В таких случаях немаловажное значение имеет стандартное обозначение одинаковых комплектующих деталей и элементов. Для этого и существуют позиционные обозначения, где типы элементов, особенности их конструкции и цифровые значения отображаются в буквенном выражении. Элементы, применяемые в общем порядке, обозначаются на чертежах, как квалификационные, характеризующие ток и напряжение, способы регулирования, виды соединений, формы импульсов, электронную связь и другие.

Электрическая схема — это текст, описывающий определенными символами содержание и работу электротехнического устройства или комплекса устройств, что позволяет в краткой форме выразить этот текст.

Для того чтобы прочесть любой текст, необходимо знать алфавит и правила чтения. Так, для чтения схем следует знать символы — условные обозначения и правила расшифровки их сочетаний.

Основу любой электрической схемы представляют условные графические обозначения различных элементов и устройств, а также связей между ними. Язык современных схем подчеркивает в символах подчеркивает основные функции, которые выполняет в схеме изображенных элемент. Все правильные условные графические обозначения элементов электрических схем и их отдельных частей приводятся в виде таблиц в стандартах.

Условные графические обозначения образуются из простых геометрических фигур: квадратов, прямоугольников, окружностей, а также из сплошных и штриховых линий и точек. Их сочетание по специальной системе, которая предусмотрена стандартом, дает возможность легко изобразить все, что требуется: различные электрические аппараты, приборы, электрические машины, линии механической и электрической связей, виды соединений обмоток, род тока, характер и способы регулирования и т. п.

Кроме этого в условных графических обозначениях на электрических принципиальных схемах дополнительно используются специальные знаки, поясняющие особенности работы того или иного элемента схемы.

Так, например, существует три типа контактов — замыкающий, размыкающий и переключающий. Условные обозначения отражают только основную функцию контакта — замыкание и размыкание цепи. Для указания дополнительных функциональных возможностей конкретного контакта стандартом предусмотрено использование специальных знаков наносимых на изображение подвижной части контакта. Дополнительные знаки позволяют найти на схеме контакты , реле времени, путевых выключателей и т.д.

Отдельные элементы на электрических схемах имеют не одно, а несколько вариантов обозначения на схемах. Так, например, существует несколько равноценных вариантов обозначения переключающих контактов, а также несколько стандартных обозначений обмоток трансформатора. Каждое из обозначений можно применять в определенных случаях.

Если в стандарте нет нужного обозначения, то его составляют, исходя из принципа действия элемента, обозначений, принятых для аналогических типов аппаратов, приборов, машин с соблюдением принципов построения, обусловленных стандартом.

Стандарты. Условные графические обозначения на электрических схемах и схемах автоматизации:

ГОСТ 2.710-81 Обозначения буквенно-цифровые в электрических схемах:

Содержание:

Для того чтобы правильно прочитать и понять, что означает та или иная схема или чертеж, связанные с электричеством, необходимо знать, как расшифровываются изображенные на них значки и символы. Большое количество информации содержат буквенные обозначения элементов в электрических схемах, определяемые различными нормативными документами. Все они отображаются латинскими символами в виде одной или двух букв.

Однобуквенная символика элементов

Буквенные коды, соответствующие отдельным видам элементов, наиболее широко применяющихся в электрических схемах, объединяются в группы, обозначаемые одним символом. Буквенные обозначения соответствуют ГОСТу 2.710-81. Например, буква «А» относится к группе «Устройства», состоящей из лазеров, усилителей, приборов телеуправления и других.

Точно так же расшифровывается группа, обозначаемых символом «В». Она состоит из устройств, преобразующих неэлектрические величины в электрические, куда не входят генераторы и источники питания. Эта группа дополняется аналоговыми или многоразрядными преобразователями, а также датчиками для указаний или измерений. Сами компоненты, входящие в группу, представлены микрофонами, громкоговорителями, звукоснимателями, детекторами ионизирующих излучений, термоэлектрическими чувствительными элементами и т.д.

Все буквенные обозначения, соответствующие наиболее распространенным элементам, для удобства пользования объединены в специальную таблицу:

Первый буквенный символ, обязательный для отражения в маркировке

Группа основных видов элементов и приборов

Элементы, входящие в состав группы (наиболее характерные примеры)

Устройства

Лазеры, мазеры, приборы телеуправления, усилители.

Аппаратура для преобразования неэлектрических величин в электрические (без генераторов и источников питания), аналоговые и многозарядные преобразователи, датчики для указаний или измерений

Микрофоны, громкоговорители, звукосниматели, детекторы ионизирующих излучений, чувствительные термоэлектрические элементы.

Конденсаторы

Микросборки, интегральные схемы

Интегральные схемы цифровые и аналоговые, устройства памяти и задержки, логические элементы.

Разные элементы

Различные виды осветительных устройств и нагревательных элементов.

Обозначение предохранителя на схеме, разрядников, защитных устройств

Плавкие предохранители, разрядники, дискретные элементы защиты по току и напряжению.

Источники питания, генераторы, кварцевые осцилляторы

Аккумуляторные батареи, источники питания на электрохимической м электротермической основе.

Устройства для сигналов и индикации

Индикаторы, приборы световой и звуковой сигнализации

Контакторы, реле, пускатели

Реле напряжения и тока, реле времени, электротепловые реле, магнитные пускатели, контакторы.

Дроссели, катушки индуктивности

Дроссели в люминесцентном освещении.

Двигатели

Двигатели постоянного и переменного тока.

Измерительные приборы и оборудование

Счетчики, часы, показывающие, регистрирующие и измерительные приборы.

Силовые автоматические выключатели, короткозамыкатели, разъединители.

Резисторы

Счетчики импульсов

Частотометры

Счетчики активной энергии

Счетчики реактивной энергии

Регистрирующие приборы

Измерители времени действия, часы

Вольтметры

Ваттметры

Выключатели и разъединители в силовых цепях

Автоматические выключатели

Короткозамыкатели

Разъединители

Резисторы

Терморезисторы

Потенциометры

Шунты измерительные

Варисторы

Коммутационные устройства в цепях измерения, управления и сигнализации

Выключатели и переключатели

Выключатели кнопочные

Выключатели автоматические

Выключатели, срабатывающие под действием различных факторов:

От уровня

От давления

От положения (путевые)

От частоты вращения

От температуры

Трансформаторы, автотрансформаторы

Трансформаторы тока

Электромагнитные стабилизаторы

Трансформаторы напряжения

Устройства связи, преобразователи неэлектрических величин в электрические

Модуляторы

Демодуляторы

Дискриминаторы

Генераторы частоты, инверторы, преобразователи частоты

Приборы полупроводниковые и электровакуумные

Диоды, стабилитроны

Электровакуумные приборы

Транзисторы

Тиристоры

Антенны, линии и элементы СВЧ

Ответвители

Короткозамыкатели

Трансформаторы, фазовращатели

Аттенюаторы

Контактные соединения

Скользящие контакты, токосъемники

Разборные соединения

Высокочастотные соединители

Механические устройства с электромагнитным приводом

Электромагниты

Тормоза с электромагнитными приводами

Муфты с электромагнитными приводами

Электромагнитные патроны или плиты

Ограничители, устройства оконечные, фильтры

Ограничители

Кварцевые фильтры

Кроме того, в ГОСТе 2.710-81 определены специальные символы для обозначения каждого элемента.

Условные графические обозначения электронных компонентов в схемах

Стандартные схематические обозначения клеммных колодок

NEMA [текст] — PLCS.net

Я никогда не видел, чтобы кто-то в США заботился о конкретном контакте # на клеммной колодке (вообще говоря), поскольку все они обычно перемыкаются, если они идентичны.
Это немного не интуитивно для меня, так как для быстрого устранения неполадок, замены датчиков и т. д. я хотел бы иметь возможность посмотреть на схему и точно знать, к какой клеммной колодке + или 24 В подключен компонент.Иначе как бы я это узнал?

Что касается вопроса «Верх/Низ» — лично я видел две вещи. Во-первых, все внутренние соединения обычно находятся на одной стороне полосы, а все внешние — на другой. Во-вторых, вся проводка OEM находится на одной стороне клеммной колодки, а проводка конечного пользователя — на другой стороне.
Да, в ЕС я тоже видел это, и мне сказали, что это стандарт. Но это также кажется немного неэффективным в отношении пространства на панели. Когда мне нужно распределить 24 В и 0 В на множество внутренних компонентов, использование обеих сторон набора терминальных блоков для внутреннего использования дает мне фактически удвоенное количество клемм.Однако для клеммных колодок датчиков я определенно согласен с этим.

Использование символов многоуровневого терминала в прикрепленном файле всегда хорошо для меня. Электрики, проводившие проводку, всегда давали положительные отзывы, и проводка шла хорошо.
О боже, спасибо за это! Я смотрел на схему и не понял, что разные квадратные штриховки для разных уровней. Кстати, я огляделся, чтобы попытаться найти стандартный список символов для определенных компонентов (по иронии судьбы, клеммные колодки являются основным), они не включены ни в один из стандартов NEMA, которые я нашел.Можете ли вы порекомендовать хороший документ для справки?

Кроме того, я никогда не называл многоуровневый терминал верхним или нижним. Вместо этого это передний, центральный и задний уровень. Подумайте об этом: глядя на панель, она выглядит как многоуровневый терминал (спереди, в центре и сзади).
Хорошее замечание, я узнал эту проблему, когда писал ее, но не был уверен, как ее лучше обозначить, теперь буду делать это так.

Использование номера провода на этих маленьких тонких клеммах представляет собой сложную задачу, поскольку в моей работе номера проводов могут состоять из 8-10 цифр.Такой длинный номер не поместится на маленькой вкладке терминала.
Итак, обычно каждый клеммный блок в шкафу имеет разные номера? Я всегда видел вещи, обозначенные как, скажем, входы ПЛК, например, все от TB1000-1 до TB1000-50, затем отдельный набор блоков (обозначенный TB1001), где выходы ПЛК могут быть от TB1001-1 до TB1001-50. Это казалось немного более разумным, чем заканчивать проводами с действительно длинными номерами, но я полагаю, что отследить их в большой системе таким образом было бы намного проще.

Если бы у нас было 3 клеммных колодки, они были бы промаркированы как (от 1TB-1 до 1TB-10, от 2TB-1 до 2TB-25 и т. д.).
ОК, поэтому в моем примере вторым уровнем будет 2TB1000-3, для 2-го уровня, 3-й клеммной колодки клеммной колодки установите TB1000?

Спасибо!

Understanding_Wiring_Diagrams_-_Part_3_Power.pdf

Стенограмма:

[0m:4s] Привет, я Джош Блум, добро пожаловать в еще одно видео из образовательной серии RSP Supply.Если вы обнаружите, что эти видео полезны для вас, это, безусловно, поможет нам, если вы поставите нам большой палец вверх и подпишитесь на наш канал.
[0m:16s] В сегодняшнем видео мы продолжаем нашу короткую серию, в которой мы учимся понимать электрические схемы, особенно связанные с управлением, чтобы вы могли читать и/или проектировать свою собственную электрическую систему управления.
[0m:30s] В нашем последнем видео мы говорили о многих наиболее распространенных символах, которые используются в электрических чертежах, и о том, как идентифицировать эти символы.
[0m:39s] Если вы сможете идентифицировать все различные символы, у вас будет гораздо больше шансов успешно прочитать и нарисовать электрическую схему.
[0m:49s] Для целей этого видео мы хотим начать с разговора о конкретном разделе электрической схемы, которая является основной частью чертежа, распределяющей энергию.
[1 мин: 1 с] Напоминаем, что в этих видеороликах основное внимание уделяется схемам подключения, которые вы можете увидеть для промышленной панели управления.Однако большинство принципов применимы к любому типу электрических чертежей.
[1m:15s] В основной силовой части панели мы сосредоточимся на таких вещах, как правильное распределение питания между различными устройствами в вашей цепи и на том, как рисовать
. все так, чтобы было легко понять. Имейте в виду, что пункты, которые мы обсуждаем сегодня, предназначены для руководства и не предназначены для замены надлежащего обучения электрическому проектированию.
[1m:38s] Важно проконсультироваться с инженером-электриком или квалифицированным специалистом, чтобы убедиться, что проектируемая вами система соответствует всем электротехническим нормам и будет функционировать безопасно и должным образом.С учетом сказанного давайте посмотрим на некоторые схемы, чтобы мы могли лучше понять основную часть рисунка распределения питания.
[1m:57s] Итак, если вы помните из нашего последнего видео, мы говорили о различных символах, которые вы увидите на электрических схемах. Как упоминалось ранее, в этом мы сосредоточимся больше на мощности и на том, как понять и нарисовать различные схемы питания, которые вы можете увидеть на различных электрических чертежах, и больше сосредоточимся на распределении мощности и на том, как эта мощность подается на различные устройства, которые мы могли бы использовать. видеть.Мы рассмотрим несколько разных примеров, и, надеюсь, к концу этого у вас будет лучшее понимание того, как вы могли бы рисовать, работаете ли вы над этим, или как вы могли бы просто уметь читать или лучше понять одну из этих диаграмм. Итак, мы продолжим и перейдем к нашему первому примеру здесь.

[2m:40s] И на этой конкретной диаграмме вы можете видеть, что у нас есть цепи на 240 вольт, которые питают эту конкретную систему. Опять же, если вы помните из нашего последнего видео, мы говорили о различных символах, которые мы увидим.Итак, здесь вы можете увидеть символ некоторых автоматических выключателей. У нас есть 2 2-полюсных автоматических выключателя на 30 ампер. Коробки просто представляют собой клеммные колодки.

[3m:4s] А эта маленькая коробочка представляет собой блок питания. Итак, снова у нас есть, просто чтобы вы понимали, у нас здесь переменный ток,
. [3m:12s] у нас есть питание постоянного тока. Таким образом, в нашей сети переменного тока в этой конкретной цепи у нас есть 240 вольт, которые подаются на автоматический выключатель на 30 ампер через некоторые клеммные колодки
. [3m:21s], которые перепрыгивают.Итак, они собираются в нескольких местах. Часть его выходит на цепь питания реле, вероятно, для какого-то управления,
[3m:30s] а потом на него надевают перемычку, похоже на блок питания. Блок питания на пять ампер, который будет обеспечивать питание постоянного тока для другого типа питания нашей системы. Итак, если мы последуем за DC,
[3m:44s] Мы увидим, что питаем ПЛК,
[3m:48s] и в этом случае еще есть двойной блок. Это представлено в виде клеммной колодки с предохранителем.Итак, это обычная клеммная колодка, это клеммная колодка с предохранителем.
[3m:56s] Вы видите маленькую двойку A, это клеммная колодка на два AMP, питающая ПЛК.
[4m:1s] Мы также подаем питание на ЧМИ, а потом мы подаем питание, это похоже на какие-то модули теплового ввода. Это для некоторого контроля. Итак, это хороший пример силовой цепи, в которой используется как переменный, так и постоянный ток. И в большинстве примеров, которые мы рассмотрели сегодня, вы увидите что-то похожее, где у нас есть как переменный, так и постоянный ток, и мы преобразуем их с помощью источника питания.
[4м:19с] Давайте продолжим и посмотрим на нашу следующую строчку.
[4m:21s] А затем этот пример, вы видите снова, у нас есть питание переменного и постоянного тока. И этот немного отличается тем, что мы подаем 120 вольт на некоторые клеммные колодки, одна из которых защищена блоком предохранителей на 10 ампер,
. [4м:32с] и здесь у нас есть сила. Пишет, что сбой питания переменного тока. На самом деле это реле А два А один. В данном конкретном случае это реле сбоя питания. Вот только мониторим нашу утилиту
власть. Если мы потеряем электроэнергию, это предупредит ПЛК, и оператор сможет узнать, если они потеряли электроэнергию.
[4m:48s] У нас также есть электроэнергия, подаваемая на розетку, которая используется ИБП, ИБП переменного тока. Таким образом, все, что ниже по потоку от этого ИБП, будь то переменный или постоянный ток, будет защищено этой резервной батареей в течение определенного периода времени.
[5м:3с] Видите ли, на этом ИБП у нас есть блок питания,
[5m:8s] обеспечивает нашу мощность постоянного тока, которая находится здесь. Итак, отключаем эту мощность постоянного тока, и снова у нас есть несколько автоматических выключателей, несколько автоматических выключателей с двумя усилителями.
[5m:15s] Мы подключаем ПЛК, еще один ПЛК и сетевой коммутатор.Опять же, чтобы вы могли видеть здесь различные символы, но самое главное, на что я хочу обратить ваше внимание, это то, как мы подаем энергию.
[5м:27с] Мы кормим нашу живую и нашу нейтральную,
[5м:29с] Наша жизнь и наш нейтралитет, наша розетка, наш ИБП. Это действительно очень просто, если вы можете просто следовать этим линиям, понимать, что они означают, читать, читать этикетки: DCB, это выключатель постоянного тока один, выключатель постоянного тока два. Очень просто понять, если вы понимаете основную терминологию. Давайте идти вперед и смотреть на.
[5m:47s] Этот, опять же, похож в том, что у нас есть как переменный, так и постоянный ток, но здесь происходит немного больше.
[5m:53s] У нас может быть 120 Вольт в качестве основного питания, подаваемого на 15-амперный автоматический выключатель. В данном случае у нас есть ограничитель перенапряжения, или извините, сетевой фильтр. Таким образом, любой всплеск, поступающий в эту конкретную систему, защитит все, что ниже по течению от этого протектора.
[6м:8с] И затем, оттуда, наш ACL или L приходит и подает свет через дверной выключатель.
[6м:15с] Снова кормление, эстафета. Это нарисовано немного по-другому, но это реле сбоя питания, а затем снова устанавливается, немного по-другому нарисовано на дуплексной розетке,
. [6m:24s], к которому подключен ИБП, который питает остальную часть нашей цепи переменного тока здесь
[6м:30с] и здесь.
[6m:31s] Итак, в этой схеме у нас есть источник питания и ПЛК, который, очевидно, потребляет переменный ток.
[6m:36s] Приехав в наш округ Колумбия, мы проложим здесь наши линии.У нас есть положительная сторона постоянного тока и отрицательная сторона постоянного тока.
[6m:42s] У нас есть несколько выключателей, в основном два выключателя AMP, питающие выключатель и сенсорный экран.
[6м:47с] Это сила ИИ. Это мощность аналогового ввода-вывода. Так для некоторого контроля.
[6m:52s] И DIO — это цифровой вход или выходная мощность, опять же, для некоторого контроля. Итак, вы видите, у нас есть три разных примера, которые мы рассмотрели,
. [7 мин: 3 с] все несколько похожи в том, как они распределяют энергию. У нас есть основной фид,
[7м:8с] а затем мы подключаем сюда несколько разных устройств: свет, реле, розетку, блок питания, а затем ПЛК.Итак, мы кормим все эти устройства очень, очень похожим образом. Итак, если вы понимаете, как распределяется мощность, вы гораздо лучше понимаете, как работают эти диаграммы, вы сможете их прочитать, и если это так, и если сценарий требует этого, вы сможете рисовать эти типы диаграмм и чувствовать себя уверенно при этом.
[7m:38s] Как видите, есть много вещей, которые можно включить в часть рисунка, посвященную распределению энергии. Важно убедиться, что вы соблюдаете все электротехнические правила, и убедиться, что вы консультируетесь с инженером-электриком или кем-то, у кого есть опыт, необходимый для обеспечения надежности вашей конструкции.
[7m:55s] Первоочередной задачей всегда должно быть создание безопасной электрической конструкции, в первую очередь, с правильным функционированием, а во вторую очередь.
[8m:3s] Полный ассортимент оборудования для промышленных панелей управления и тысячи других продуктов можно найти на нашем веб-сайте. Для получения дополнительной информации или других обучающих видеороликов перейдите на сайт RSPSupply.com, крупнейшего в Интернете источника промышленного оборудования. Также не забывайте: ставьте лайки и подписывайтесь.

Подготовка к тесту

ASE — провода, разъемы и электрические схемы

1.Два техника обсуждают конструкцию жгута проводов: Техник A говорит, что разъем № 1 является штекерным разъемом, потому что в то время как пластиковый разъем входит в разъем №2. Техник Б говорит что разъем номер 2 является штекерным разъемом, потому что он Штыревые клеммы внутри. Кто прав?

только техник А.
только техник Б.
оба техника А и Б.
ни техник А, ни Б.

 

2. На изображении GM, показанном ниже, «170» означает:

номер цепи.
размер провода.
место соединения.
цвет провода.

 

3. На картинке GM, показанной выше в вопросе 2, что означает буква А представляет:

идентификатор коннектора.
номинал предохранителя.
расположение контактов внутри разъема.
идентификатор сварки.

 

4. Символ электрической схемы Toyota ниже обозначает a:

Стык кузова №4.
разъем компонента #BY1.
разъем провод к проводу #BY1.
масса кузова #BY1

 

5. Клеммы предназначены для соединения друг с другом и используются для согласования пары обозначаются как:

терминал и разъем.
терминал и наконечник.
мужчина и женщина.
поляризованные и неполяризованные.

 

6. Разъемы жгута проводов:

не может быть расположен на схемах источника питания.
сделать хорошие контрольные точки.
используются для управления током.
никогда не следует открывать.

 

7. Следующие два символа представляют какие два устройства?

Постоянный резистор и лампа.
Переменный резистор и лампа.
Лампа и мотор.
Переключатель и реле.

 

8. Это электрический символ для:

И Ворота.
ИЛИ Ворота.
NAND-ворота.
IC JPET-транзистор.

 

9. Это электрический символ для:

Резистор.
Диод.
Транзистор.
Цифровые часы.

 

10. Код «B-R» рядом с проводом означает, что это провод:

.
Коричневый с красной полосой.
Черный с красной полосой.
Синий с красной полосой.
Жгут стоп-сигнала, правая сторона.

 

11. Техник А говорит, что два разъема с одинаковыми номерами физически тот самый разъем. Техник B говорит, что два разъема нарисованы друг от друга, чтобы рисунок было легче читать. Кто прав?

только.
только Б.
как А, так и В.
ни А, ни Б.

 

12. Число вне символа Toyota, показанное ниже, означает:

Номер разъема.
Номинал предохранителя.
Количество контактов в разъеме.
Номер вывода, используемый в схеме.

 

13. Когда этот переключатель управления освещением повернут в положение «HEAD», замкнута цепь между:

Только контакт 4 и контакт 3.
Только контакт 10 и контакт 3.
Только контакт 10, контакт 4 и контакт 3.
Только контакты 12, 13, 5 и 4.

 

14. Электрическая цепь имеет большое падение напряжения перед нагрузкой. Техник А говорит, что причиной может быть плохое соединение клемм. Техник Б говорит, что оборванные жилы в кабеле могут быть причиной поломки. причина.Кто прав?

Только техник А.
Только техник Б.
и техник А, и техник Б.
ни техник А, ни техник Б.

 

15. В электрическая схема Toyota показана ниже, «B» в коде соединения указывает на соединение:

в тормозном отделе.
Батарея заряжена.
В организме.
В распределительном блоке

 

16. Буквы внутри разъема показывают:  

представление цепи, такое как задние тормоза или противодавление.
цвет провода.
проводка компонентов, таких как стоп-сигналы, тормоза.
какой общий разъем корпуса подключен.

 

17. На диаграмме GM ниже «C301» представляет:

автоматический выключатель № 301.
№ цепи 301.
соединитель номер 301.
окружность проволоки (диаметр/размер).

 

18. Ссылка к картинке выше в вопросе 17, что представляет собой P500:

цвет провода.
номер цепи.
расположение резиновой втулки.
цепь стояночного тормоза.

 

19. буквы внутри разъема GM, показанные ниже, обозначают:  

номер цепи.
пин код.
место сращивания.
цвет провода.

 

20. Прокладка проводов, как показано ниже, идеально подходит для:

информация о разборке.
получение спецификации напряжения.
понимание того, как работает схема.
поиск местоположения разъема.

 

   21. Два техника обсуждают показанный компонент диаграммы GM. ниже: техник А говорит, что буквы рядом с каждым проводом идентифицируют цвет провода и что буква «О» относится к оранжевый цвет.Техник Б говорит, что пунктирная линия между двумя переключатели указывает, что оба переключателя перемещаются вместе. Кто прав?

только техник А.
только техник Б.
оба техника А и Б.
ни техник А, ни Б.

 

22.Два техника обсуждают показанный компонент диаграммы GM. внизу: техник А говорит, что буква «А» внутри верхней стороны треугольник вниз указывает на то, что цикл продолжается на следующей странице в треугольнике «А». Техник А говорит, что S221 относится к Схема стартера 221. Кто прав?

только техник А.
только техник Б.
оба техника А и Б.
ни техник А, ни Б.

 

23. Ссылаясь на компонент диаграммы GM выше в вопросе 22, что означает ли «2 YEL»:

номер контакта разъема и номер цепи.
номер цепи и цвет провода.
номер контакта разъема и цвет провода.
размер и цвет провода.

 

Как выбрать клеммную колодку

Соответствие IEC

Электронные клеммные колодки Eaton соответствуют требованиям публикации IEC 60947-7-1, Клеммные колодки для медных проводников.Эти блоки одновременно признаны и сертифицированы в рамках программы классификации UL. Подробная информация о рейтинговой системе IEC представлена ​​на следующей странице. Номинальные параметры, если не указано иное, соответствуют UL 1059.

СЕ

В 1998 году Eaton получила сертификат СЕ на всю свою продукцию. Для клеммных колодок CE — это знак самосертификации, который наносится на продукты, отвечающие требованиям безопасности и производительности, установленным Европейским союзом (ЕС). Этот знак необходим для свободного перемещения продукта на европейском рынке.

МЭК 60947-7-1

Подобно классам UL1059, IEC 60947-7-1 ссылается на IEC60947-1, в котором излагаются общие правила для низковольтных распределительных устройств и аппаратуры управления, а также определяются пределы пути утечки и зазора в зависимости от степени загрязнения. Степень загрязнения относится к условиям окружающей среды, для которых предназначено оборудование.

Воздействие на изоляцию определяется микросредой пути утечки или воздушного зазора, а не средой оборудования.Микроокружение может быть лучше или хуже, чем окружение оборудования. Он включает в себя все факторы, влияющие на изоляцию, такие как климатические и электромагнитные условия, образование загрязнений и т. д. Поэтому для оборудования, предназначенного для использования в оболочке или оснащенного встроенной оболочкой, применима степень загрязнения окружающей среды в оболочке.

Для целей оценки воздушных зазоров и путей утечки устанавливаются четыре степени загрязнения микросреды:

  • Степень загрязнения 1: Загрязнение отсутствует или имеет место только сухое непроводящее загрязнение.
  • Степень загрязнения 2: Обычно имеет место только непроводящее загрязнение. Иногда можно ожидать временную проводимость, вызванную конденсацией.
  • Степень загрязнения 3: возникает токопроводящее загрязнение или возникает сухое непроводящее загрязнение, которое становится проводящим из-за конденсации.
  • Степень загрязнения 4: Загрязнение создает постоянную проводимость, вызванную, например, токопроводящей пылью, дождем или снегом.

Степень загрязнения 3 является стандартной степенью загрязнения для промышленного применения, если иное не указано в соответствующем стандарте на продукцию.Однако в зависимости от конкретного применения или микросреды могут рассматриваться и другие степени загрязнения.

Импульсное выдерживаемое напряжение – максимальное пиковое значение импульсного напряжения установленной формы и полярности, которое не вызывает пробоя при определенных условиях испытаний.

Понимание электрических чертежей




Цели

1. Распознавать символы, часто используемые на схемах двигателя и управления.

2.Прочитайте и постройте лестничные диаграммы.

3. Прочтите электрические, однолинейные и блок-схемы.

4. Ознакомьтесь с клеммными соединениями для различных типов двигателей.

5. Интерпретируйте информацию, указанную на заводских табличках двигателя.

6. Ознакомьтесь с терминологией, используемой в схемах двигателей.

7. Понимание работы ручных и магнитных пускателей двигателей.

При работе с двигателями используются различные виды электрических чертежей. и схемы их управления.Для облегчения создания и чтения электрические чертежи, используются определенные стандартные обозначения.

Чтобы читать чертежи электродвигателей, необходимо знать как значение символов и как работает оборудование.

Этот раздел поможет вам понять использование символов в электротехнике. рисунки. В этом разделе также объясняется моторная терминология и иллюстрируется это с практическими приложениями.


ЧАСТЬ 1 Символы – Сокращения – Лестничные диаграммы

Символы двигателя

Цепь управления двигателем может быть определена как средство подачи питания к и отключению питания от двигателя.Символы, используемые для обозначения различные компоненты системы управления двигателем можно рассматривать как тип технической стенографии.

Использование этих символов делает электрические схемы менее сложными. и легче читать и понимать.

В системах управления двигателями символы и соответствующие линии показывают, как цепи соединены друг с другом. К сожалению, не все электрические и электронные символы стандартизированы.Вы найдете немного другое символы, используемые разными производителями. Кроме того, символы иногда выглядят ничего похожего на настоящую вещь, так что вы должны узнать, что означают символы. ФГР. 1 показаны некоторые типичные символы, используемые на принципиальных схемах двигателей.

Сокращения моторных терминов

Аббревиатура — это сокращенная форма слова или фазы. Заглавные буквы используются для большинства сокращений. Ниже приведен список некоторых из сокращения, обычно используемые на принципиальных схемах двигателей.

Переменный ток переменного тока ARM якорь AUTO автоматический выключатель BKR COM общий Реле управления CR Трансформатор тока CT Постоянный ток постоянного тока Динамическое торможение DB FLD поле FWD вперед GRD заземление Мощность л.с. L1, L2, L3 соединения линии электропередач Концевой выключатель LS MAN ручной MTR двигатель M пускатель двигателя NEG отрицательный NC нормально замкнут NO нормально разомкнут OL реле перегрузки PH фаза PL сигнальная лампа POS положительная мощность PWR Кнопка PRI первичного PB

REC выпрямитель REV обратный RH реостат SSW защитный выключатель SEC вторичный 1PH однофазный соленоид SOL SW переключатель T1, T2, T3 соединения клемм двигателя 3PH трехфазный трансформатор TD с выдержкой времени TRANS

Схемы лестницы двигателя

Чертежи управления двигателем содержат информацию о работе цепи, устройстве и расположение оборудования, а также инструкции по подключению.Символы, используемые для представления коммутаторы состоят из узловых точек (мест, где устройства схемы подключаются к друг друга), контактные полосы и специальный символ, который идентифицирует определенный тип переключателя, как показано на FGR. 2.

Хотя устройство управления может иметь более одного набора контактов, только контакты, используемые в схеме, представлены на контрольных чертежах.

Различные схемы управления и чертежи используются для установки, обслуживания, и устранять неисправности в системах управления двигателем.К ним относятся лестничные диаграммы, электрические схемы, линейные схемы и блок-схемы. «Лестничная диаграмма» (рассматривается некоторыми как схематическая диаграмма) фокусируется на электрической операции схемы, а не физического местоположения устройства. Например, два кнопки остановки могут физически находиться на противоположных концах длинного конвейера, но электрически бок о бок на лестничной диаграмме.

Лестничные диаграммы, такие как показанная в FGR. 3, нарисованы двумя вертикальные линии и любое количество горизонтальных линий.Вертикальные линии (называемые рельсами) подключаются к источнику питания и обозначаются как линия 1 (L1) и линия 2 (L2). Горизонтальные линии (называемые перекладинами) соединены через L1 и L2 и содержат схему управления.

Лестничные диаграммы предназначены для чтения как книга, начиная с вверху слева и чтение слева направо и сверху вниз.

Поскольку лестничные диаграммы легче читать, они часто используются при отслеживании посредством работы цепи.Самые программируемые логические контроллеры (ПЛК) используют концепцию лестничных диаграмм в качестве основы для своего программирования. язык.


ФГР. 1 Символы управления двигателем.


ФГР. 2 Переключите части компонентов символа.


ФГР. 3 Типовая лестничная диаграмма.


ФГР. 4 Силовая и управляющая проводка двигателя.

Большинство лестничных диаграмм иллюстрируют только однофазную цепь управления. подключен к L1 и L2, а не к трехфазной цепи питания двигатель.ФГР. 4 показаны проводка силовой цепи и цепи управления.

На схемах, включающих проводку силовых цепей и цепей управления, вы можете увидеть линии как с тяжелым, так и с легким проводом. Жирные линии используются для силовая цепь с большим током и более легкие линии для слаботочной цепь управления.

Представлены проводники, пересекающиеся друг с другом, но не имеющие электрического контакта. пересекающимися линиями без точки.

Соприкасающиеся проводники обозначены точкой в ​​месте соединения.В большинстве случаев управляющее напряжение получают непосредственно от источника питания. цепи или от понижающего управляющего трансформатора, подключенного к силовой схема.

Использование трансформатора позволяет использовать более низкое напряжение (120 В переменного тока) для управления. цепи при питании трехфазной цепи питания двигателя с более высоким напряжения (480 В переменного тока) для более эффективной работы двигателя.

Лестничная диаграмма дает необходимую информацию для легкого следования последовательность работы схемы.

Это отличная помощь в устранении неполадок, поскольку она показывает простым способом эффект, который открытие или закрытие различных контактов оказывает на другие устройства в схема. Все переключатели и релейные контакты классифицируются как нормально открытый (NO) или нормально закрытый (NC). Позиции, изображенные на диаграммах, электрические характеристики каждого устройства, как было бы найдено, когда оно куплен и не подключен ни к одной цепи. Это иногда называют как «готовое» или обесточенное состояние.Это важно чтобы понять это, потому что это может также представлять обесточенное положение в цепи. Обесточенное положение относится к положению компонента когда цепь обесточена или в цепи отсутствует питание. Эта точка отсчета часто используется в качестве отправной точки в анализе. работы цепи.


ФГР. 5 Идентификация катушек и связанных с ними контактов.

Общий метод, используемый для идентификации катушки реле и задействованных контактов. это поместить букву или буквы в круг, который представляет катушка (ФГР.5). Каждый контакт, управляемый этой катушкой, будет иметь буква катушки или буквы, написанные рядом с символом контакта.

Иногда при наличии нескольких контактов, управляемых одной катушкой, число добавляется к письму для указания контактного телефона. Хотя там являются стандартными значениями этих букв, большинство диаграмм содержат список ключей показать, что означают буквы; обычно они взяты из названия устройства.

Нагрузка – элемент цепи, имеющий сопротивление и потребляющий электрическую энергию. питание подается с L1 на L2.Катушки управления, соленоиды, звуковые сигналы и пилот огни являются примерами нагрузки. Должно быть включено хотя бы одно загрузочное устройство на каждой ступени лестничной диаграммы. Без нагрузочного устройства управление устройства будут переключать разомкнутую цепь на короткое замыкание между Л1 и Л2. Контакты от управляющих устройств, таких как переключатели, кнопки, и реле считаются не имеющими сопротивления в замкнутом состоянии. Связь контактов параллельно с нагрузкой также может привести к короткому замыканию когда контакт замыкается.Ток в цепи пойдет по пути наименьшего сопротивления через замкнутый контакт, закорачивая нагрузку под напряжением.

Обычно нагрузки размещаются в правой части лестничной диаграммы рядом с к L2 и контакты с левой стороны рядом с L1. Одно исключение из этого правилом является размещение нормально замкнутых контактов, контролируемых устройство защиты двигателя от перегрузки. Эти контакты нарисованы справа сторону катушки стартера двигателя, как показано на FGR.6. При двух и более нагрузках должны быть под напряжением одновременно, они должны быть подключены в параллельно. Это гарантирует, что полное линейное напряжение от L1 и L2 будет появляются при каждой загрузке. Если нагрузки соединены последовательно, получит все сетевое напряжение, необходимое для правильной работы. Отзывать что при последовательном соединении нагрузок приложенное напряжение делится между каждой из нагрузок. При параллельном соединении нагрузок напряжение на каждая нагрузка одинакова и равна по величине приложенному напряжению.

Устройства управления, такие как переключатели, кнопки, концевые выключатели и датчики давления переключатели управляют нагрузкой. Устройства, запускающие нагрузку, обычно подключаются параллельно, а устройства, останавливающие нагрузку, подключаются последовательно. Для например, несколько кнопок запуска, управляющих одним и тем же пускателем двигателя катушка будет подключена параллельно, а несколько кнопок остановки будут соединены последовательно (FGR. 7). Все устройства управления идентифицированы с соответствующей номенклатурой устройства (например,г., стоп, старт). Точно так же все нагрузки должны иметь сокращения, указывающие на тип нагрузки (например, M для катушки стартера). Часто дополнительный номер суффикс используется для различения нескольких устройств одного типа. Для Например, схема управления с двумя пускателями двигателей может идентифицировать катушки как М1 (контакты 1-М1, 2-М1 и т.д.) так и М2 (контакты 1-М2, 2-М2 и т.д.).


ФГР. 6 Нагрузки размещены справа, а контакты слева.


ФГР. 7 Остановочные устройства подключаются последовательно, а пусковые устройства подключаются параллельно.


ФГР. 8. Лестничная диаграмма с подробными номерами ступеней.

По мере увеличения сложности схемы управления ее лестничная диаграмма увеличивается в размере, что затрудняет чтение и поиск контактов. какой катушкой управляются. «Нумерация звеньев» используется для облегчения в чтении и понимании больших лестничных диаграмм. Каждая ступенька отмечена лестничная диаграмма (ступени 1, 2, 3 и т. д.).), начиная с верхней ступени и чтение вниз. Цепь может быть определена как полный путь от L1 до L2, содержащий нагрузку. ФГР. 8 иллюстрирует маркировку каждой ступени в линейная диаграмма с тремя отдельными звеньями:

• Путь для ступени 1 завершен с помощью кнопки реверса, цикл кнопка запуска, концевой выключатель 1LS и катушка 1CR.

• Путь для ступени 2 завершается через кнопку реверса, реле контакт 1CR-1, концевой выключатель 1LS и катушка 1CR.Обратите внимание, что ступень 1 и ступень 2 идентифицируются как две отдельные ступени, даже если они управляют одним и тем же нагрузка. Причина этого в том, что либо кнопка запуска цикла, либо контакт реле 1CR-1 завершает путь от L1 до L2.

• Путь для ступени 3 завершается через релейный контакт 1CR-2 к и соленоид SOL A.

«Числовые перекрестные ссылки» используется в сочетании с нумерация ступеней для размещения вспомогательных контактов, управляемых катушками в цепь управления.Иногда вспомогательные контакты не находятся в непосредственной близости на лестничной диаграмме к катушке, управляющей их работой. Чтобы найти эти контакты, номера звеньев указаны справа от L2 в круглых скобках на звене катушки, управляющей их работой.

В примере, показанном в FGR. 9:

• Контакты катушки 1CR расположены в двух разных местах на линии. диаграмма.

• Цифры в скобках справа от линейной диаграммы обозначают расположение линии и тип контактов, управляемых катушкой.

• Цифры в скобках для нормально разомкнутых контактов без специальной маркировки.

• Номера, используемые для нормально замкнутых контактов, обозначаются подчеркиванием или завышение числа, чтобы отличить их от нормально разомкнутых контактов.

• В этой схеме катушка реле управления 1CR управляет двумя наборами контактов: 1КР-1 и 1КР-2. Это показано числовым кодом 2, 3.

Требуется некоторый тип «идентификации провода», чтобы правильно соедините проводники цепи управления с их компонентами в цепи.Метод, используемый для идентификации проводов, различается у каждого производителя. ФГР. 10 показан один из способов, в котором каждая общая точка схемы присвоен регистрационный номер:

• Нумерация начинается со всех проводов, подключенных к стороне L1 блок питания обозначен номером 1.

• Продолжая цепочку 1 в верхнем левом углу схемы, новый номер обозначается последовательно для каждого провода, пересекающего компонент.

• Электрически общие провода помечены одинаковыми номерами.

• Как только первый провод, непосредственно подключенный к L2, был обозначен (в в этом случае 5), все остальные провода, напрямую подключенные к L2, будут помечены с тем же номером.

• Количество компонентов в первой строке лестничной диаграммы определяет номер провода для проводников, непосредственно подключенных к L2.


ФГР. 9 Числовая система перекрестных ссылок.


ФГР. 10 Нумерация проводов.


ФГР. 11 Идентификация альтернативной проводки с документацией.


ФГР. 12 Представление механических функций.


ФГР. 13 Заземление управляющего трансформатора: (a) управляющий трансформатор должным образом заземлен на стороне L2 цепи; (б) управляющий трансформатор неправильное заземление на стороне L1 цепи.

ФГР. 11 иллюстрирует альтернативный способ назначения номеров проводов.При использовании этого метода все провода, непосредственно подключенные к L1, обозначаются как 1, а все подключенные к L2 обозначаются 2. Ведь все провода с 1 и 2 отмечены, остальные номера присваиваются в последовательном порядке начиная с верхнего левого угла диаграммы.

Преимущество этого метода в том, что все провода соединяются напрямую до L2 всегда обозначаются как 2. Лестничные диаграммы также могут содержать серию описаний, расположенных справа от L2, которые используются для документирования функция схемы, управляемая устройством вывода.

Пунктирная линия обычно указывает на механическое соединение. Не делай ошибка чтения ломаной линии как части электрической цепи. В ФГР. 12 вертикальные прерывистые линии на кнопках прямого и обратного хода указывают, что их нормально замкнутый и нормально разомкнутый контакты механически связаны. Таким образом, нажатие на кнопку откроет один набор контактов и закрыть другой. Пунктирная линия между катушками F и R указывает что они механически сблокированы.Следовательно, катушки F и R не могут замкнуть контакты одновременно из-за механического блокирующего действия устройства.

Когда требуется, чтобы управляющий трансформатор имел одну из вторичных линий заземление, заземление должно быть выполнено таким образом, чтобы случайное заземление в цепи управления не заведется двигатель или не сработает кнопка остановки или управление не работает. ФГР. 13а показан вторичный элемент управления трансформатор должным образом заземлен на стороне L2 цепи.Когда цепь исправна, вся цепь слева от катушки М является незаземленная цепь (это «горячая» ветвь). Путь неисправности к земле в незаземленной цепи создаст условия короткого замыкания, вызывающие предохранитель управляющего трансформатора размыкается. ФГР. 13б показана та же схема неправильное заземление на L1. В этом случае короткое замыкание на землю на слева от катушки M подаст питание на катушку, неожиданно запустив двигатель. Предохранитель не сработает, чтобы разомкнуть цепь и нажать на стоп, но ton не обесточит катушку М.Повреждение оборудования и травмы персонала было бы очень вероятно. Очевидно, что выходные устройства должны быть подключены напрямую. к заземленной стороне цепи.

ЧАСТЬ 1 ТЕСТ

1. Дайте определение термину «схема управления двигателем».

2. Почему для обозначения компонентов на электрических схемах используются символы?

3. Электрическая цепь содержит три контрольных лампы. Что приемлемо символ может использоваться для обозначения каждого огня?

4.Опишите базовую структуру электрической лестничной схемы.

5. Линии используются для представления электрических проводов на схемах.

а. Чем провода, по которым течет большой ток, отличаются от проводов, по которым течет ток? нести слабый ток?

б. Как различаются провода, которые пересекаются, но не соединяются электрически? от тех, что подключаются электрически?

6. Контакты кнопочного выключателя размыкаются при нажатии кнопки. К какому типу кнопок можно отнести эту кнопку? Почему?

7.Катушка реле с маркировкой TR содержит три контакта.

Какое приемлемое кодирование можно использовать для идентификации каждого из контактов?

8. Ступень на лестничной диаграмме требует наличия двух нагрузок, каждая из которых рассчитана на полное линейное напряжение, под напряжением, когда выключатель замкнут. Какая связь нагрузки должны быть использованы? Почему?

9. Одним из требований для конкретного применения двигателя является шесть выключатели должны быть замкнуты до того, как двигатель будет запущен.Какие связи коммутаторов следует использовать?

10. Идентификационные этикетки проводов на нескольких проводах электрической панели проверяются и обнаруживаются одинаковые номера. Что это значит?

11. Ломаная линия, представляющая механическую функцию на электрической схема ошибочно принята за проводник и подключена как таковая. Какие два типа к каким проблемам это может привести?


ЧАСТЬ 2 Схемы электрических соединений – однолинейные – блок-схемы

Схемы подключения


ФГР.14 Типовая электрическая схема пускателя двигателя.

Этот материал и связанные с ним авторские права являются собственностью и используются с разрешения Schneider Electric.

Схемы подключения используются для отображения двухточечной проводки между компонентами. электрической системы, а иногда и их физическое отношение друг к другу. Они могут включать идентификационные номера проводов, присвоенные проводникам в лестничная диаграмма и/или цветовое кодирование. Катушки, контакты, двигатели и как показано в фактическом положении, которое было бы найдено на установке.Эти схемы полезны при подключении систем, поскольку соединения могут сделать точно так, как показано на схеме. Схема подключения дает необходимую информацию для фактического подключения устройства или группы устройств или для физического отслеживания проводов при устранении неполадок. Однако, по такому рисунку трудно определить работу схемы.


ФГР. 15 Прокладка проводов в кабелях и кабелепроводах.


ФГР.16 Электропроводка с внутренними соединениями магнитного пускателя опущено.

Схемы подключения предоставляются для большинства электрических устройств. ФГР. 14 иллюстрирует приведена типовая схема подключения пускателя двигателя. На схеме показано, как можно точнее фактическое расположение всех составных частей устройства. Открытые клеммы (отмечены открытым кружком) и стрелки представляют соединения, сделанные пользователем. Обратите внимание, что жирные линии обозначают силовая цепь, а более тонкие линии используются для обозначения цепи управления.

Прокладка проводов в кабелях и кабелепроводах, как показано в FGR. 15, является важной частью электрической схемы. На схеме разводки показано начало и конец электрических проводов и показывает приблизительную путь, пройденный любым каналом при переходе от одной точки к другой. Интегрированный чертежом такого рода является график трубопроводов и кабелей, который табулирует каждый канал по количеству, размеру, функции и обслуживанию, а также включает в себя количество и размер проводов, которые должны быть проложены в кабелепроводе.

Схемы подключения показывают детали фактических подключений. Редко они попытайтесь показать полную информацию о проводке панели управления или оборудования. То схема подключения ФГР. 15, приведенный к более простой форме, показан в FGR. 16 с опущенными внутренними соединениями магнитного пускателя. Провода заключенные в кабелепровод C1, являются частью силовой цепи и рассчитаны на Требуемый ток двигателя. Провода, заключенные в кабелепровод C2, являются частью цепи управления более низким напряжением и размером в соответствии с текущими требованиями управляющего трансформатора.


ФГР. 17 Комбинация проводки и лестничной схемы.


ФГР. 18 Однолинейная схема моторной установки.


ФГР. 19 Однолинейная схема системы распределения электроэнергии.

Схемы подключения часто используются вместе с лестничными диаграммами для упростить понимание процесса управления. Примером этого является проиллюстрировано в FGR. 17. На схеме подключения показаны как питание, так и управление. схемы.

Включена отдельная лестничная диаграмма цепи управления, чтобы дать более четкое представление о его работе. Следуя лестничной схеме видно, что контрольная лампа подключена так, что она будет гореть всякий раз, когда стартер находится под напряжением.

Цепь питания опущена для ясности, так как ее можно проследить легко на электрической схеме (жирные линии).

Однолинейные схемы

В однолинейной (также называемой однолинейной) диаграмме наряду с одна линия, чтобы показать все основные компоненты электрической цепи.Немного производители оборудования для управления двигателем используют однолинейный чертеж, например тот, что показан в FGR. 18, как дорожная карта в изучении двигательного контроля. установки. Установка сводится к максимально простой форме, тем не менее, он по-прежнему показывает основные требования и оборудование в цепи.

Энергетические системы представляют собой чрезвычайно сложные электрические сети, которые могут быть географически распределены на очень больших территориях. По большей части они тоже трехфазные сети-каждая силовая цепь состоит из трех проводников и все устройства, такие как генераторы, трансформаторы, выключатели и разъединители и т.п.установлен на всех трех фазах. Эти системы могут быть настолько сложными, что полная обычная схема, показывающая все соединения, нецелесообразна. В этом случае использование однолинейной схемы является кратким способом передача базового устройства компонента энергосистемы. ФГР. 19 показана однолинейная схема малой системы распределения электроэнергии. Эти типы диаграмм также называются диаграммами «стояка мощности».

Блок-схемы

Блок-схема представляет основные функциональные части сложной электрической/электронной системы. системы блоками, а не символами.Отдельные компоненты и провода не показаны. Вместо этого каждый блок представляет электрические цепи, которые выполнять определенные функции в системе. Функции, которые выполняют цепи записываются в каждом блоке.

Стрелки, соединяющие блоки, указывают общее направление тока пути.

ФГР. 20 показана блок-схема привода двигателя переменного тока с переменной частотой. Преобразователь частоты регулирует скорость двигателя переменного тока, изменяя частота, подаваемая на двигатель.Привод также регулирует мощность напряжение пропорционально выходной частоте, чтобы обеспечить относительно постоянное отношение (вольт на герц; В/Гц) напряжения к частоте, как требуется характеристиками двигателя переменного тока для создания соответствующего крутящего момента. То функции каждого блока резюмируются следующим образом:

• На блок выпрямителя подается трехфазное питание частотой 60 Гц.

• Блок выпрямителя представляет собой цепь, которая преобразует или выпрямляет трехфазную переменного напряжения в постоянное напряжение.

• Блок инвертора представляет собой схему, которая инвертирует или преобразует вход постоянного тока. напряжение обратно в напряжение переменного тока.

Инвертор состоит из электронных переключателей, которые переключают напряжение постоянного тока включение и выключение для получения управляемой выходной мощности переменного тока на желаемой частоте и напряжение.


ФГР. 20 Блок-схема частотно-регулируемого привода переменного тока.

ЧАСТЬ 2 ТЕСТ

1. Какова основная цель электрической схемы?

2.Кроме цифр, какой еще метод можно использовать для идентификации провода на схеме?

3. Какую роль может сыграть электрическая схема в поиске неисправности двигателя цепь управления?

4. Перечислите фрагменты информации, которые с наибольшей вероятностью можно найти в канале. и график кабелей для установки двигателя.

5. Объясните цель использования электрической схемы двигателя в сочетании с с лестничной схемой цепи управления.

6. Каково основное назначение однолинейной схемы?

7. Каково основное назначение блок-схемы?

8. Объясните работу выпрямительного и инверторного блоков преобразователя частоты. привод переменного тока.


ЧАСТЬ 3 Соединения клемм двигателя

Классификация двигателей

Электродвигатели были важным элементом нашего промышленного и коммерческой экономики более века.

Большинство промышленных машин, используемых сегодня, приводятся в действие электродвигателями. Промышленность перестала бы функционировать без должным образом спроектированных, установленных, и обслуживаемые системы управления двигателем. Как правило, двигатели классифицируются в зависимости от типа используемой мощности (переменный или постоянный ток) и принципа работы двигателя операции. «Генеалогическое древо» моторных типов довольно обширно, как показано вверху следующей страницы:

В США Институт инженеров по электротехнике и электронике (IEEE) устанавливает стандарты для испытаний двигателей и методологий испытаний, пока Национальная ассоциация производителей электротехники (NEMA) готовит стандарты производительности двигателя и классификации.

Дополнительно двигатели должны быть установлены в соответствии со статьей 430 Национального электротехнического кодекса (NEC).

Соединения двигателя постоянного тока

Промышленные приложения используют двигатели постоянного тока, потому что отношение скорости к крутящему моменту можно легко варьировать. Двигатели постоянного тока имеют скорость, которой можно управлять плавно спускается до нуля, сразу же следует ускорение в обратном направлении направление. В аварийных ситуациях двигатели постоянного тока могут подавать более пяти раз номинальный крутящий момент без остановки.Динамическое торможение (энергия двигателя постоянного тока подается на резисторную сетку) или рекуперативное торможение (двигатель постоянного тока генерирует энергия возвращается в источник питания двигателя постоянного тока) может быть получена с двигателями постоянного тока в приложениях, требующих быстрой остановки, что устраняет необходимость в или уменьшение размера, механический тормоз.

ФГР. 21 показаны символы, используемые для обозначения основных частей прямого текущий (постоянный ток) комбинированный двигатель.



ФГР. 21 Детали составного двигателя постоянного тока.

Вращающаяся часть двигателя называется якорем; стационарный часть двигателя называется статором, который содержит серию обмотка возбуждения и шунтирующая обмотка возбуждения. В машинах постоянного тока A1 и A2 всегда обозначают выводы якоря, S1 и S2 обозначают последовательные выводы возбуждения, а F1 и F2 указывают выводы шунтирующего поля.

Это вид возбуждения поля, обеспечиваемый полем, которое отличает один тип двигателя постоянного тока от другого; конструкция арматуры имеет ничего общего с классификацией двигателей.Есть три общих типа двигателей постоянного тока, классифицируемых по способу возбуждения поля как следует:

• В шунтирующем двигателе постоянного тока (FGR. 22) используется шунт со сравнительно высоким сопротивлением. обмотка возбуждения, состоящая из множества витков тонкой проволоки, соединенных параллельно (шунт) с якорем.

• Серийный двигатель постоянного тока (FGR. 23) использует последовательное поле с очень низким сопротивлением. обмотка, состоящая из нескольких витков толстой проволоки, соединенных последовательно с арматурой.

• В составном двигателе постоянного тока (FGR. 24) используется комбинация шунтирующего поля (многие витков тонкой проволоки) параллельно с якорем и последовательное поле (несколько витков толстого провода) последовательно с якорем.


ФГР. 22 Стандартные подключения шунтирующего двигателя постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


ФГР. 23 Стандартные соединения двигателей постоянного тока для вращения против часовой стрелки и вращение по часовой стрелке.


ФГР.24 стандартных соединения двигателей постоянного тока (кумулятивных) для счетчика мудрое и вращение по часовой стрелке. Для дифференциального компаундного соединения обратная С1 и С2.

Все соединения, показанные на рисунках 22, 23 и 24, предназначены для вращения против часовой стрелки. и вращение по часовой стрелке, обращенное к концу, противоположному приводу (конец коллектора). Одна из целей нанесения маркировки на клеммы двигателей в соответствии с к стандарту, чтобы помочь в выполнении соединений, когда предсказуемое вращение требуется направление.Это может быть в том случае, когда неправильное вращение может привести к небезопасной работе или повреждению. Маркировка клемм обычно используется маркировать только те клеммы, к которым должны быть подключены снаружи схемы.

Направление вращения двигателя постоянного тока зависит от направления магнитное поле и направление тока в якоре. Если либо направление поля или направление тока, протекающего через якорь реверсируется, вращение двигателя будет реверсивным.Однако, если оба эти фактора поменять местами одновременно, двигатель продолжайте вращаться в том же направлении.

Соединения двигателя переменного тока

Асинхронный двигатель переменного тока является доминирующей технологией, используемой сегодня. что составляет более 90 процентов установленной мощности двигателя. индукция двигатели доступны в однофазной (1?) и трехфазной (3?) конфигурациях, величиной от долей лошадиной силы до десятков тысяч Лошадиные силы.Они могут работать с фиксированными скоростями — чаще всего 900, 1200, 1800, или 3600 об/мин, или быть оснащенным приводом с регулируемой скоростью.

Наиболее часто используемые двигатели переменного тока на сегодняшний день имеют конфигурацию с короткозамкнутым ротором. (FGR. 25), названный так из-за алюминиевой или медной беличьей клетки, встроенной в внутри железных ламинатов ротора. Физического электричества нет. соединение с беличьей клеткой. Ток в роторе индуцируется вращающееся магнитное поле статора.

Модели с фазным ротором, в которых витки проволоки вращают обмотки ротора, так же доступно. Они дорогие, но обеспечивают больший контроль над двигателем. эксплуатационные характеристики, поэтому чаще всего используются для специальных крутящих моментов и приложения для ускорения, а также для приложений с регулируемой скоростью.


ФГР. 25 Трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.


ФГР. Двухфазный асинхронный двигатель на 26 переменного тока.


ФГР.27 Соединения статора двухфазного двигателя с двойным напряжением.

СОЕДИНЕНИЯ ОДНОФАЗНОГО ДВИГАТЕЛЯ

Большинство однофазных асинхронных двигателей переменного тока имеют дробную мощности для источников питания от 120 до 240 В, 60 Гц. Хотя там есть несколько типов однофазных двигателей, они в основном идентичны кроме средств запуска. «Двигатель с расщепленной фазой» наиболее широко используется для средних пусковых приложений (FGR.26). Операция сплит-мотора резюмируется следующим образом:

• Двигатель имеет пусковую и основную, или рабочую, обмотку, обе из которых находятся под напряжением. когда двигатель запущен.

• Пусковая обмотка создает разность фаз для запуска двигателя. и выключается центробежным выключателем по мере приближения к рабочей скорости. Когда двигатель достигает примерно 75 процентов своей номинальной скорости при полной нагрузке, пусковая обмотка отключается от цепи.

• Мощность двигателя с расщепленной фазой варьируется примерно до ½ л.с. Популярные приложения включают вентиляторы, воздуходувки, бытовую технику, такую ​​как стиральные и сушильные машины, и инструменты, такие как небольшие пилы или сверлильные станки, где нагрузка применяется после двигатель набрал свою рабочую скорость.

• Двигатель можно реверсировать, поменяв местами выводы пусковой обмотки. или основную обмотку, но не обе. Обычно отраслевым стандартом является поменять местами выводы пусковой обмотки

В двухфазном двигателе с двойным напряжением (FGR.27), рабочая обмотка разделен на две секции и может быть подключен для работы от 120-вольтовой или источник 240 В. Две рабочие обмотки соединены последовательно при работе от источника 240 В и параллельно для работы на 120 В.

Пусковая обмотка подключается поперек питающих линий на низкое напряжение и на одной линии до средней точки пусковых обмоток для высокого напряжения. Это гарантирует, что все обмотки получат напряжение 120 В, на которое они рассчитаны. работать в.Чтобы изменить направление вращения двойного разделения напряжения фазный двигатель, поменяйте местами два провода пусковой обмотки.

Двигатели с двойным напряжением подключаются для требуемого напряжения следующим образом. схема подключения на заводской табличке.

Номинальное номинальное напряжение двигателя с двухфазным питанием составляет 120/240 В. С любого типа двигателя с двойным напряжением, более высокое напряжение предпочтительнее, когда возможен выбор напряжения. Двигатель потребляет столько же мощности и производит такое же количество лошадиных сил при работе от питание 120 В или 240 В.Однако при увеличении напряжения в два раза по сравнению со 120 В до 240 В ток уменьшается вдвое. Эксплуатация двигателя на этом пониженном уровень тока позволяет использовать меньшие проводники цепи и снижает потери мощности в линии.


ФГР. 28 Двигатель с постоянно разделенным конденсатором.

Многие однофазные двигатели используют конденсатор последовательно с одним из статоров. обмотки для оптимизации разности фаз между пусковой и рабочей обмотками для запуска.Результатом является более высокий пусковой момент, чем у двухфазного двигателя. Мотор может произвести. Существует три типа конденсаторных двигателей: конденсаторный пуск, при котором фаза конденсатора находится в цепи только во время пуска; постоянно разделенный конденсатор, в котором фазы конденсатора в цепи как для запуска, так и для работы; и двухконденсатор , в котором есть разные значения емкости для запуска и работы. постоянный раскол конденсаторный двигатель, показанный на FGR.28, постоянно использует конденсатор включен последовательно с одной из обмоток статора. Эта конструкция ниже по стоимости, чем двигатели с конденсаторным пуском, которые включают конденсаторное переключение системы. Установки включают компрессоры, насосы, станки, воздушные кондиционеры, конвейеры, воздуходувки, вентиляторы и другие устройства, которые трудно запустить.

СОЕДИНЕНИЯ ТРЕХФАЗНОГО ДВИГАТЕЛЯ

Трехфазный асинхронный двигатель переменного тока является наиболее распространенным двигателем, используемым в коммерческих целях. и промышленного применения.

Однофазные двигатели большей мощности обычно не используются, поскольку они малоэффективны по сравнению с трехфазными двигателями. Кроме того, однофазный двигатели не запускаются самостоятельно от своих рабочих обмоток, как трехфазные моторы.

Двигатели переменного тока большой мощности обычно трехфазные.

Все трехфазные двигатели имеют внутреннюю конструкцию с рядом индивидуальных намотанные катушки. Независимо от того, сколько имеется отдельных катушек, отдельные катушки всегда будут соединены вместе (последовательно или параллельно) для получения трех отдельные обмотки, которые называются фазой A, фазой B и фазой С.Все трехфазные двигатели подключены так, что фазы соединены в либо звездой (Y), либо треугольником (?), как показано на FGR. 29.

СОЕДИНЕНИЯ ДВИГАТЕЛЯ НА ДВУХ НАПРЯЖЕНИЯХ


ФГР. 29 Трехфазное подключение двигателя по схеме «звезда» и «треугольник».

Обычной практикой является производство трехфазных двигателей, которые можно подключать работать при разных уровнях напряжения.

Наиболее распространенное номинальное напряжение для трехфазных двигателей — 208/230/460. В.Всегда проверяйте технические характеристики двигателя или паспортную табличку на предмет правильного напряжения. номинальные характеристики и схема подключения для способа подключения к источнику напряжения.

ФГР. 30 иллюстрирует типичную идентификацию терминала и подключение таблица для девятивыводного трехфазного двигателя с двойным напряжением, соединенным звездой. Один конец каждой фазы внутренне постоянно соединен с другими фазами.

Каждая фазная катушка (А, В, С) разделена на две равные части и соединена либо последовательно для работы с высоким напряжением, либо параллельно для работы с низким напряжением операция.Согласно номенклатуре NEMA, эти выводы имеют маркировку от T1 до Т9. Соединения высокого и низкого напряжения приведены в сопроводительной документации. таблица подключения и клеммная колодка двигателя. Тот же принцип серии применяется параллельное (высоковольтное) и параллельное (низковольтное) соединение катушек. для трехфазных двигателей двойного напряжения, соединенных звездой-треугольником. В любом случае обратитесь к электрической схеме, прилагаемой к двигателю, чтобы обеспечить правильное подключение для желаемого уровня напряжения.

Прод. к части 2 >>

Понимание схем — технические статьи

Если вы хотите научиться лучше читать схемы, это полезное руководство поможет вам начать работу.

Каждая новая электрическая плата начинается с идеи. Затем эта идея определяется словами и диаграммами в спецификации. Любой может зайти так далеко, но следующий шаг требует фундаментального понимания принципиальных схем.

Принципиальные схемы

 – это связующее звено между концептуальным электрическим проектом и физической реализацией печатной платы в сборе, или PCBA.

 

Цепь лома

 

Схемы служат двум основным целям. Во-первых, они сообщают о дизайнерском замысле. Для специалиста в области проектирования электрических схем схемы должны четко отражать замысел проекта. И, во-вторых, они существуют, чтобы направлять и управлять компоновкой печатной платы.

Чтобы хорошо начать понимать схемы, вы должны понимать некоторые основные вещи: символы компонентов, позиционные обозначения (REFDES), цепи и выходы.

Справочные обозначения (REFDES)

Ссылочные обозначения — это уникальные идентификационные метки для каждого физического компонента, и они многое сообщают о компонентах, к которым они относятся.

Правильное использование REFDES сообщает читателю схем тип компонента и количество символов на компонент. Хотя существуют стандартные символы, обозначающие различные типы электрических компонентов, которые мы обсудим далее, не все схемы соответствуют всем этим стандартам.

В случае, когда каждый пассивный компонент показан в виде стандартной коробки с выводами, префиксы условного обозначения могут многое рассказать о типе компонента, который представляет этот символ.Ссылочные обозначения также служат ссылкой на спецификацию материалов (BOM). Спецификация имеет номер детали каждого компонента в вашей конструкции печатной платы и указывает, в каких местах должна быть установлена ​​​​эта деталь, согласно REFDES.

Стандартный для отрасли формат позиционных обозначений включает буквенный код, указывающий тип компонента, за которым следует уникальный номер.

 

БТ = Аккумулятор J = Соединитель R = Резистор
С = Конденсатор К = Реле S или SW = переключатель
D = диод L = индуктор Т = Трансформатор
F = предохранитель P = Соединитель U = интегральная схема
H = оборудование Q = Транзистор Y = Кристалл

 

Мы укажем REFDES для каждого компонента, поскольку мы идентифицируем их символы ниже.

Символы компонентов

Символы компонентов на схеме представляют собой физические компоненты, которые будут припаяны к печатной плате (PCB) в процессе сборки. Иногда они также могут представлять структуры печатных плат, такие как переходные отверстия или контрольные точки.

Символы компонентов часто представляют собой стандартную форму или рисунок, указывающий, к какому типу электрических компонентов они относятся, хотя иногда они представляют собой не что иное, как прямоугольник с контактами. Резисторы, конденсаторы, катушки индуктивности, диоды и транзисторы имеют стандартные символы, которые мы кратко рассмотрим ниже.

Символы компонентов всегда имеют один или несколько контактов, к которым можно выполнить электрические соединения. Каждый вывод символа схемы имеет номер, соответствующий чертежу физического компонента. Один или несколько символов могут использоваться для обозначения одного электрического компонента. Компоненты с большим количеством выводов часто представляются несколькими схематическими символами просто для удобства чтения схем.

В случае части, определяемой несколькими символами, каждый разделенный символ, относящийся к одному и тому же физическому компоненту, имеет одно и то же условное обозначение.

 

Часто используемые символы схемы
Резистор

Резисторы являются чрезвычайно распространенными электрическими компонентами. В США они обычно изображаются зигзагообразной линией, хотя в международном стандарте они изображаются просто прямоугольником.

 

Американские (вверху) и международные (внизу) символы для резисторов

 

Резисторы обозначаются на схемах ссылочным обозначением (REFDES), начинающимся с буквы «R».

 

Конденсатор
Конденсаторы

также очень распространены. Они показаны в виде двух линий, разделенных промежутком, что свидетельствует об их фундаментальной конструкции двух заряженных пластин, разделенных диэлектриком. Два основных символа конденсатора неполяризованные и поляризованные.

Поляризованные конденсаторы обозначаются изогнутой линией (для обозначения отрицательного вывода) и/или знаком плюс (для обозначения положительного вывода).

 

Символы конденсаторов.Показаны неполяризованный конденсатор в крайнем левом углу и три версии поляризованного конденсатора.

 

Конденсаторы обозначаются на схемах ссылочным обозначением (REFDES), начинающимся с буквы «C».

 

Индуктор

Катушки индуктивности, как резисторы и конденсаторы, являются основными пассивными компонентами, используемыми в электрических цепях. Катушки индуктивности показаны в виде серии кривых, представляющих их основную конструкцию. Катушки индуктивности проще всего сконструировать из катушки с проволокой вокруг некоторого материала сердечника.

 

Символ индуктора

 

Катушки индуктивности

обозначаются на схемах ссылочным обозначением (REFDES), начинающимся с буквы «L».

 

Диод

Диоды — это электрические компоненты, пропускающие ток только в одном направлении. Существуют различные типы диодов. Например, стабилитроны не пропускают обратный ток, пока обратное напряжение диода не достигнет определенного уровня.

 

Символ диода

 

Светоизлучающий диод (LED) излучает свет, когда через него протекает ток в прямом направлении. Диод Шоттки сконструирован таким образом, что он работает аналогично простому диоду, но переключается быстрее и имеет меньшее прямое падение напряжения.

 

Символ стабилитрона

 

Символ диода Шоттки

 

Диоды обозначаются на схемах условным обозначением (REFDES), начинающимся с буквы «D» или «Z» (для стабилитронов).«LED» иногда используется для светоизлучающих диодов.

 

Транзистор

Транзисторы похожи на электрические переключатели, в которых напряжение смещения или ток в одной области включают ток, протекающий через основные клеммы.

Существует два основных типа транзисторов: транзисторы с биполярным переходом (BJT) и полевые транзисторы (FET).

Проще говоря, биполярные транзисторы — это устройства с регулируемым током, в которых ток, втекающий в базовый штырь или выходящий из него, вызывает больший ток через штырьки коллектора и эмиттера.

 

Символы BJT

 

Также упрощенно можно сказать, что полевые транзисторы — это устройства, управляемые напряжением, в которых напряжение на выводе затвора включает ток через выводы стока и истока. Для транзисторов используется множество рисунков, на которых указано различное количество деталей внутренних компонентов.

 

Символы FET

 

Транзисторы обозначаются на схемах ссылочным обозначением (REFDES), начинающимся с буквы «Q».«M» иногда используется для устройств MOSFET. «T» иногда используется неправильно, и его следует избегать.

Для получения более подробной информации о биполярных транзисторах, полевых транзисторах, IGBT и т. д. ознакомьтесь с нашей статьей, посвященной схематическим обозначениям транзисторов.

 

Переменные резисторы

Переменные резисторы, такие как потенциометры и реостаты – это резисторы, сопротивление которых изменяется в соответствии с настройками пользователя. Переменные резисторы с двумя выводами показаны как резистор со стрелкой на нем, а потенциометры (с тремя выводами) добавляют стрелку, указывающую сбоку от символа резистора.

 

Символ реостата

 

 

Символ потенциометра

 

Резисторы, зависящие от напряжения, или варисторы, похожи на переменные резисторы, но с линией вместо стрелки.

 

Символ варистора

 

Специальные резисторы чаще всего обозначаются на схемах условным обозначением (REFDES), начинающимся с буквы «R», хотя иногда используется «VR» (для переменных резисторов или потенциометров) или «RV» (для варисторов).

 

Интегральная схема

Интегральные схемы — это целые электрические схемы, созданные из полупроводникового материала в одном корпусе. Интегральные схемы — это процессоры, память, операционные усилители и стабилизаторы напряжения, которые выглядят как квадраты или прямоугольники, установленные на печатной плате.

Интегральные схемы показаны в виде коробки или набора коробок с помеченными выводами для питания, входов и выходов.

 

 

Интегральные схемы обозначаются на схемах ссылочным обозначением (REFDES), начинающимся с буквы «U» или иногда с букв «IC».

Кристалл/Генератор/Резонатор

Все три из них обеспечивают известную постоянную выходную частоту при подаче питания в цепь. Кристаллы, генераторы и резонаторы — это не одно и то же, они имеют разные характеристики и требуют разных вспомогательных схем, но их основные цели схожи.

 

Хрустальный символ

 

Кристаллы и генераторы обозначаются на схемах ссылочным обозначением (REFDES), начинающимся с буквы «Y».Иногда используется «X»; это письмо также является универсальным для компонентов, не подпадающих под другую категорию.

 

Цифровые логические элементы

Существует много цифровых логических вентилей — больше, чем можно подробно описать в этом обзоре. Для полного объяснения цифровой логики и множества различных типов логических вентилей см. страницу учебника AAC по цифровым сигналам и вентилям.

 

 

Логические элементы

продаются как интегральные схемы, поэтому на схемах они обозначаются ссылочным обозначением (REFDES), начинающимся с буквы «U» или иногда «IC», как и другие интегральные схемы.

 

Операционный усилитель

Операционные усилители и компараторы имеют множество полезных функций в схемах, и на схемах они показаны в виде перевернутых треугольников с входами (+) и (-), а иногда и контактами питания и заземления.

 

Символ операционного усилителя

 

Схема операционного усилителя с двойным питанием (слева) и конфигурация с однополярным питанием (справа) с указанными контактами питания и заземления

 

Операционные усилители и компараторы обозначаются на схемах условными обозначениями (REFDES), начинающимися с буквы «U» или иногда «IC», как и другие интегральные схемы.Кроме того, операционные усилители иногда используют REFDES, начинающийся с «OP».

 

Соединитель/головка

Соединители и разъемы — это места, где другие цепи или кабели подключаются к цепи, описанной на схеме. Существует большое разнообразие типов и ориентаций разъемов, и они также представлены на схемах множеством символов.

Иногда схематические символы представляют собой простые прямоугольники, а иногда схематические символы представляют собой рисунки, которые выглядят как физические разъемы, которые они представляют.

 

 

Символы разъемов

 

Разъемы и разъемы чаще всего обозначаются на схемах ссылочным обозначением (REFDES), начинающимся с буквы «J» или буквы «P».

 

Переключатель

Переключатели обычно изображаются схематическим символом, который представляет тип переключателя и количество полюсов/ходов и контактов.

 

Символы переключателей

 

Переключатели обозначаются на схемах ссылочным обозначением (REFDES), начинающимся с букв «SW».

 

Аккумулятор

Аккумуляторы обозначены схематическим символом, состоящим из длинной и короткой линий, вместе представляющих один аккумуляторный элемент. На практике большинство схемных обозначений аккумуляторов рисуются в виде двух ячеек, независимо от того, сколько ячеек на самом деле содержит батарея.

 

Символ батареи

 

Аккумуляторы обозначаются на схемах ссылочным обозначением (REFDES), начинающимся с буквы «B».

 

Трансформатор

Трансформаторы обычно изображаются схематическим символом, который символически представляет принцип работы трансформатора. Это выглядит как две параллельные катушки индуктивности с чем-то между ними, обычно линией или двумя.

 

 

Трансформаторы обозначаются на схемах ссылочным обозначением (REFDES), начинающимся с буквы «T».

 

Предохранитель/PTC

Плавкие предохранители или PTC ( p ositive t emperature c oefficient devices) — это устройства защиты цепи, которые «перегорают» или резко увеличивают сопротивление в случае протекания через них слишком большого тока.

Предохранители

обычно обозначаются на схемах символом, похожим на перевернутую букву «S».

 

Символ предохранителя

 

Предохранители обозначаются на схемах условным обозначением (REFDES), начинающимся с буквы «F».

PTC обычно изображаются в виде прямоугольника с линией, пересекающей его по диагонали; тот же символ используется для термисторов PTC.

 

Символы PTC

 

PTC

обозначаются на схемах ссылочным обозначением (REFDES), начинающимся с букв «R», «VR» или «PTC».

 

Некомпонентные символы

На схемах есть другие символы, которые не представляют физические компоненты. Некоторые символы представляют собой физические структуры, которые должны быть встроены в саму печатную плату, например контрольные точки или монтажные отверстия.

 

Символы контрольных точек

 

Другие схематические символы обозначают шины питания или заземления.

 

Символ заземления

 

Другие символы схемы используются для связи между разными страницами схемы с метками, указывающими, частью какой электрической сети они являются.

Некомпонентные символы часто не имеют ссылочных обозначений. Некоторые из них будут иметь ссылочные обозначения (REFDES), начинающиеся с букв «TP» (контрольные точки), «MH» (монтажные отверстия) или «X» (общий универсал для неуказанных в остальном типов).

 

Для получения более подробной информации о некоторых символах, обсуждаемых в этой статье, ознакомьтесь с трактовкой Робертом Кеймом схематических символов для пассивных компонентов.

Сетки

На языке схем и печатных плат сети представляют собой электрические соединения на печатной плате.Цепи отображаются как линии, соединяющие выводы символа компонента с другими выводами или цепями.

Рекомендуется при рисовании схем помечать важные цепи, чтобы их можно было четко идентифицировать при размещении на печатной плате. Если две цепи не нарисованы как соединенные, но имеют одинаковую метку, они будут рассматриваться как физически соединенные программным обеспечением для ввода схем, поэтому при экспорте проекта в инструмент компоновки печатных плат они будут одной и той же цепью.

 

Изображение схемы с двумя цепями, не нарисованными соединенными, но помеченными одинаковыми, поэтому физически связанными, в данном случае «STEPM_R_EN»
 

Рекомендуется использовать специальные символы для отображения сетевых подключений к другим страницам или частям той же страницы, когда они не отображаются как подключенные.Это внутристраничные (внутри страницы) или межстраничные (между страницами) символы соединения.

 

Межстраничные соединители

 

Для удобочитаемости хорошие схемы избегают перекрытия цепей, где это возможно, но это не всегда возможно. Когда две цепи соединяются, большинство инструментов для рисования схем добавляют точку или круг соединения. Отсутствие точки соединения означает, что две сети не связаны, а просто проходят друг над другом. Более продвинутые инструменты рисования схем показывают переходы между проводами, чтобы было еще понятнее, что две цепи не соединены.

 

Связанные сети

 

Несоединенные сети (с проводным переходом)

Важные выходные данные: список цепей и спецификация

Список соединений

Наиболее важным результатом схемы является список соединений. Этот файл или набор файлов являются основными входными данными для программного обеспечения для компоновки печатных плат, и они используются разработчиками топологии для размещения и разводки всех схем на плате.

Форматы

Netlist различаются, но обычно они указывают в довольно простой форме каждый компонент или символ на схеме и каждое соединение (цепь) между ними.Если вы назвали свои цепи в своей схеме, эти имена цепей появятся в списке цепей в качестве точки соединения между частями. Если вы не назвали сеть, инструмент вывода списка соединений сгенерирует для нее имя.

Как правило, список соединений будет содержать несколько таблиц: в одной перечислены части и их имена, в другой перечислены имена цепей и их соединения и т. д. Списки соединений также можно использовать для включения дополнительной информации, необходимой для моделирования цепей SPICE. См. несколько простых примеров вывода списка соединений здесь.

Спецификация (ведомость материалов)

Другим важным результатом схемы является спецификация или спецификация. Выходная спецификация представляет собой электронную таблицу или базу данных, которая сопоставляет каждый REFDES на схеме с физическим компонентом и номером детали.

Существует множество форматов вывода спецификации, в зависимости от сложности вашей схемы и базы данных деталей, а также от того, какой тип вывода вы хотите получить. На самом простом конце спектра у вас может быть список позиционных обозначений, каждое из которых имеет номер детали производителя.

 

Скриншот вывода спецификации OrCAD

 

Более сложные спецификации будут включать внутренние номера деталей вашей компании, количество деталей, используемых в нескольких местах, номера деталей нескольких поставщиков, которые можно использовать для данной детали, и т. д. Спецификация содержит информацию, необходимую для получения схемы и ее фактического построения. в сборку.


 

Схемы — это гораздо больше, чем просто эти ключевые элементы.Целые отрасли и карьеры строятся вокруг проектирования схем и сборки печатных плат. Но понимание этих пяти вещей поможет вам понять самые важные основы схемотехники.

 

Вы просматриваете схему и нуждаетесь в помощи по чему-то, что не описано в этой статье? Расскажите нам об этом в комментариях, и мы, возможно, напишем статью, чтобы помочь!

Проект электрической схемы, выполненный быстро и с умом

E3.схема считается базовым модулем программного обеспечения для электротехники E3.series. Это простое в использовании решение для создания и документирования электрических систем управления, включая схемы, клеммные колодки и ПЛК. Его объектно-ориентированная архитектура обеспечивает комплексный и последовательный подход к проектированию, помогая устранить ошибки, повысить качество и сократить время проектирования. Это, без сомнения, наиболее используемый и распространенный инструмент среди самых разнообразных операций электротехники и проектов автоматизации в мире, служащий начальным шагом к более сложным решениям и дополнениям к промышленным процессам.

Среди его ключевых функций — проверка правил проектирования в реальном времени (DRC), используемая для выявления и предотвращения ошибок на этапе проектирования проекта. Кроме того, он имеет обширную библиотеку компонентов от таких поставщиков, как ABB, Siemens, Schneider и Bosch , которая помогает в реализации проектов с автоматическим выбором компонентов. См. эти и другие основные функции E3.schematic ниже.

Проверка правил проектирования

Благодаря функции проверки правил проектирования любые ошибки, допущенные во время проектирования, автоматически предупреждаются.Таким образом, можно предотвратить дублирование имен, а также предотвратить короткие замыкания и неправильное распределение проводов.

Предупреждение об ошибке при вставке провода с сечением больше указанного

Попробуйте СЕЙЧАС лучший в отрасли инструмент E-CAE серии E3.series с курсами технического обучения!

Нажмите на баннер ниже:

На главном экране листа проекта отображается предупреждение о том, какая ошибка была допущена.

Исправлена ​​ошибка, подтвержденная проверкой правил проектирования

Таким образом, можно проверить, где находится ошибка, и внести исправления в режиме реального времени. Предотвращая возникновение этих ошибок на этапе проектирования, E³.schematic гарантирует, что проектные данные всегда будут точными до их вывода на производство.

Библиотека компонентов

Обширная библиотека компонентов, представленная в E3.schematic, позволяет простым перетаскиванием вставлять компоненты от ведущих поставщиков на рынке, таких как ABB, Siemens, Schneider и других.

Вставка компонентов в E3.schematic

Элементы, взятые из библиотеки компонентов, имеют все символы, необходимые дизайнеру. Например, переключатель, добавленный в конструкцию, будет включать в себя правильную катушку и все другие вспомогательные переключатели, что предотвращает использование несуществующих гибридных компонентов и значительно экономит время.

Соединения

E3.Schematic автоматически подключает устройства, просто выбирая область, где они находятся. Просто выберите два устройства, которые вы хотите подключить, и E3.Серии добавят провода от одного к другому.

Автоматические соединения в E3.schematic

Кроме того, при изменении положения устройств соединения сохраняются, просто перенастраивая их путь в соответствии с требованиями проекта.

Автоматическое изменение соединений в E3.schematic

Таким образом, даже меняя положение устройств, соединения не прерываются.

Попробуйте лучший в отрасли E-CAE E3 СЕЙЧАС.серийный инструмент в мире с курсами технического обучения!

Нажмите на баннер ниже:

Клеммы

Клеммы, добавленные на схему, объединяются с помощью клеммной колодки в E3.schematic.

Создание терминалов

Клеммная колодка автоматически создается из клемм, вставленных в схему.

Программируемый логический контроллер (ПЛК)

Интеграция

с программируемыми логическими контроллерами (ПЛК) является родной для E3.схематический. Данные ПЛК, присутствующие в схеме, переносятся в электронную таблицу Excel, где можно внести изменения и отправить обратно в E3. Функции ПЛК, адреса и информация о местоположении управляются централизованно, а затем обновляются через удобный интерфейс.

Управление адресами ПЛК

Кроме того, инструмент проверяет дублирующиеся адреса и позволяет экспортировать данные в формате ПЛК. Интеграция систем программирования с E³.series позволяет обмениваться этой информацией в обоих направлениях.Это означает, что пользователь может свести к минимуму ошибки точности данных в процессе проектирования.

Список материалов (BOM)

Составление списка материалов с такой информацией, как производитель, описание и обозначение устройства, выполняется автоматически во время подготовки проекта.

Спецификация, созданная в E3.schematic

Список материалов обновляется по мере изменения проекта, поэтому вся информация, содержащаяся в нем, точно отражает проект.

Поиск эффективного и безошибочного выполнения проектов предполагает выбор идеального инструмента для проектирования.

Добавить комментарий

Ваш адрес email не будет опубликован.