Меню Закрыть

Последовательное соединение светильников схема: Последовательное и параллельное соединение ламп

Содержание

Последовательное и параллельное соединение ламп

Здравствуйте, уважаемые читатели сайта sesaga.ru. Сегодня мы рассмотрим практичные схемы последовательного и параллельного соединения ламп накаливания.

В статье схемы подключения трех и более ламп я рассказывал про параллельное соединение, а вот про последовательное упустил. В этой статье мы рассмотрим оба вида соединений используемых в быту.

Пойдем от простого к сложному. Обыкновенная лампа на принципиальных схемах обозначается таким образом:

Следующий момент Вы должны понять и запомнить:

Соединительные провода на схемах показываются линиями. Места соединения трех и более проводов показываются точками, а если провода пересекаются без соединения, то в месте их пересечения точка не ставится.

На рисунке ниже показано, когда провода просто пересекаются, то есть проходят рядом и не касаются друг друга, и когда провода уже соединены между собой — об этом говорит

точка, стоящая в пересечении.

А теперь рассмотрим виды соединений:

Последовательное соединение ламп накаливания.

Последовательное соединение ламп накаливания в домашнем быту используется редко. В свое время я подключал две лампы последовательно у себя в подъезде, но это был единичный случай.

Тут ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.

Но повторюсь – это редкий случай.

Посмотрите на рисунок ниже. Здесь изображены две схемы последовательного соединения ламп накаливания. В верхней части рисунка показана принципиальная схема, а в нижней части – монтажная. Причем для лучшего восприятия, монтажная схема показана с реальным изображением ламп и двужильного провода.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если подать напряжение питания 220В на концы L и N, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

На следующем рисунке показаны три лампы соединенные последовательно.

На этой схеме напряжение на каждой лампе составит около 73 Вольт, так как будет делиться уже между тремя лампами.

Так же примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

P.S. Так как напряжение в сети не постоянно, то расчет лучше производить исходя из 245 – 250 Вольт.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на базар, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, как Вы уже догадались, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Параллельное соединение ламп.

Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.

На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»

Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.

Кстати, именно «звездой» делают разводку по квартире при монтаже розеток.

Ну вот в принципе и все. И как всегда по традиции ролик о последовательном и параллельном подключении ламп

Теперь я думаю, у Вас не должно возникнуть проблем с последовательным и параллельным соединением ламп.
Удачи!

Параллельное соединение светильников схема

Когда проводка в квартире или доме уже присутствует и нет надобности подключать дополнительные источники света, то вопрос — как подключить лампу, не является актуальным. Но как же выполнить эту работу когда появляется такая необходимость. Тут без элементарных знаний электротехники и умения составить принципиальную, казалось бы, элементарную схему уже не обойтись. Все источники света люминесцентные экономки , лампы накаливания, светодиодные светильники могут быть подключены, как в принципе и все имеющиеся в электрической цепи сопротивления, параллельно, последовательно, смешанно.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Схема подключения двухклавишного выключателя

Различные способы подключения одной, двух и более ламп


Для того чтобы зажечь самую простую лампу накаливания, нужно подключить ее контакты на фазу L и ноль N. Два провода к ней подходят из распределительной коробки или из розетки. Параллельная схема предусматривает подключение нескольких лампочек на общие фазный и нулевой провода рис.

Здесь параллельно подключены три лампы накаливания. Для удобства в схеме установлен выключатель. Принципиальная схема рис. Достоинством параллельного соединения является возможность подключения потребителей электроэнергии к напряжению сети.

К лампам на рис. Сила тока I в питающих проводах равна сумме сил токов всех участков I1, I2, I3 , подключенных параллельно рис. Подключение ламп накаливания, приведенное выше, не представляет особой сложности.

Но схема галогенных и люминесцентных ламп имеет некоторые отличия. Питание пониженным напряжением повышает безопасность эксплуатации источников света. При этом яркость остается прежней. Галогенные лампы могут применяться с понижающими трансформаторами на 6, 12 и 24 В рис. Напряжение В подается на малогабаритный электронный трансформатор, который можно встроить даже в корпус выключателя. Низковольтные галогенные лампы часто применяются в подвесных потолках.

Их подключают параллельно и соединяют с трансформатором. На фото ниже представлена блок-схема с двумя трансформаторами. Напряжение В подается на них через распределительную коробку. Нулевой провод обозначен синим цветом, а фазный — коричневым, со вставленным в разрыв выключателем.

Группы ламп соединены между собой параллельно в распределительной коробке, после которой производится разветвление питающих проводов на первичные обмотки трансформаторов.

Лампы подключаются ко вторичной обмотке 12 В параллельно между собой. Для их соединения применяются клеммные колодки на схеме не показаны. Выходной провод низкого напряжения не должен быть длиннее 2 метров.

Иначе возрастают потери напряжения, и лампы будут светиться хуже. Будет лучше, если сделать расчет напряжения для всех ламп. Пример расчета напряжения на лампочках в зависимости от потерь в проводах следующий. Требуется найти напряжение на каждой лампочке. Схема изображена на рис. Из расчета видно, что даже небольшие сопротивления подводящих проводов приводят к существенному падению на них напряжения.

Недостатком люминесцентных ламп является эффект мерцания, что ухудшает восприятие света глазами. Современные электронные ПРА пускорегулирующие аппараты решают эту проблему, но цена их выше.

Для уменьшения пульсации при использовании электромагнитного балласта применяется двухламповая схема подключения, где на одной из ламп фаза сдвигается во времени. В результате суммарный световой поток выравнивается. На рис. Две лампы подключены к сети переменного напряжения параллельно. Обе они содержат индуктивные балласты L1 и L2.

Но к лампе 2 подключен дополнительный балластный конденсатор Сб , благодаря которому создается сдвиг тока по фазе на В результате снижается суммарная пульсация светового потока светильника. Кроме того, ток внешней цепи почти совпадает по фазе с напряжением питания за счет комбинации опережающей и отстающей схем, что позволяет увеличить коэффициент мощности.

В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания. Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет. Просто берете любой конец провода от каждой лампы и скручивает их между собой. Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку.

И далее встречается с нулем. Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.

При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по Ватт с рабочим напряжением Вольт, то на каждую из них будет приходиться плюс-минус Вольт. Грубо говоря, если вы подключите параллельно две лампы по Вт каждая, то в итоге получите светильник мощностью в Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки.

Вот результат измерения силы тока такой сборки при фактическом питающем напряжении В. При этом, падение яркости будет равномерным только при условии, что лампочки у вас одинаковой мощности. Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому. Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и Вт и соедините последовательно.

Какая из них будет светиться почти в полный накал? Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.

Грубо говоря, источник света с лампой Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.

Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто. Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете В. Как будет светиться в этом случае данная гирлянда?

Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть. Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения. В результате, у вас будет наблюдаться следующий эффект.

При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении — другая. Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки. Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение V, и он как положено загорается.

А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться. Допустим, вам нужно подключить параллельно между собой два трехфазных В ввода, от одного источника питания.

Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать? Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек. Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в В. А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы.

Но самое лучшее и практичное применение — это использовать данную схему вовсе не для освещения, а для обогрева. То есть, ваши источники света в первую очередь будут работать не как светильники, а как обогреватели. Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже. Теперь давайте рассмотрим параллельную схему соединения.

При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение V.

Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку. В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники. На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.

Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными. Данная схема применяется повсеместно — в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т. И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.

Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном. Ток в электроцепи проходит по проводникам от источника напряжения к нагрузке, то есть к лампам, приборам. В большинстве случаев в качестве проводника используются медные провода.


Организация освещения с двумя лампочками и одним выключателем

Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна. Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях. Последовательная схема подключения В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания. Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.

Электрическая схема параллельного соединения. группы точечных, и других светильников — все это примеры параллельного соединения.

Схемы подключения точечных светильников

В быту чаще всего пользуются параллельным подключением лампочек, но иногда более выгодно последовательное соединение. В связи с ростом популярности точечных светильников осветительных приборов в квартирах и частных домах стало больше. При необходимости заменить лампочку проблем не возникает, сложнее добавить дополнительные источники света. Если подобные работы выполняются самостоятельно, требуется умение определять преимущества каждого вида соединения и составлять схемы. Способ и порядок подключения лампы зависит от ее вида. Методы, используемые для лампочек накаливания, не подойдут для галогенок, люминесцентных светильников или светодиодов. При использовании схемы параллельного подключения источники света подключаются к фазе и нулю. Например, если нужно соединить 2 лампочки, скручиваются их питающие провода. Важно, чтобы сечение соответствовало нагрузке.

Последовательное соединение лампочек схема с выключателем

Для работы точечных светильников требуется напряжение Вольт или 12 Вольт. Однако подключение таких приборов освещения не зависит от величины напряжения, они подключаются параллельно или последовательно. Чтобы получить напряжение 12 Вольт, необходимо использовать понижающий трансформатор, в котором происходит преобразование стандартного напряжения Вольт до нужного значения. Как уже говорилось выше, для подачи питания точечным светильникам на 12 Вольт необходимо дополнительное оборудование, преобразователь, трансформатор или драйвер. Однако в последнее время на рынке осветительных приборов появилась новинка — споты, работающие от напряжения Вольт.

Всем тем, кто хоть сколько-нибудь разбирается в эксплуатации электрических цепей, наверняка известно, что обычные лампочки могут включаться как последовательно одна вслед за другой , так и в параллель. Еще один способ их включения, называемый смешанным или комбинированным, предполагает последовательное и параллельное соединение этих изделий одновременно смотрите приведенное ниже фото.

Последовательное и параллельное соединение ламп.

Когда проводка в квартире или доме уже присутствует и нет надобности подключать дополнительные источники света, то вопрос — как подключить лампу, не является актуальным. Но как же выполнить эту работу когда появляется такая необходимость. Тут без элементарных знаний электротехники и умения составить принципиальную, казалось бы, элементарную схему уже не обойтись. Все источники света люминесцентные экономки , лампы накаливания, светодиодные светильники могут быть подключены, как в принципе и все имеющиеся в электрической цепи сопротивления, параллельно, последовательно, смешанно. Смешанное соединение не используется для подключения ламп, так как в нём просто нет необходимости. А вот на параллельном и последовательном подключении стоит остановить своё внимание поподробнее.

Схема параллельного подключения ламп

Для того чтобы зажечь самую простую лампу накаливания, нужно подключить ее контакты на фазу L и ноль N. Два провода к ней подходят из распределительной коробки или из розетки. Параллельная схема предусматривает подключение нескольких лампочек на общие фазный и нулевой провода рис. Здесь параллельно подключены три лампы накаливания. Для удобства в схеме установлен выключатель. Принципиальная схема рис. Достоинством параллельного соединения является возможность подключения потребителей электроэнергии к напряжению сети.

схема подключения точечных светильников Схема параллельного подключения точечных.

У людей, чья работа связана с электрикой, люди такой профессии сталкиваются с различными электрическими соединениями:. Каждый человек сам по себе индивидуален и делает все по своему, — также, это наблюдается и по части электрики. При работе, следует обращать свое внимание, как допустим соединен:.

Нет ничего проще для электрика, чем подключить светильник. Давайте заранее договоримся, что будем рассматривать как пример освещение в сетях V AC, эта информация справедлива и для других напряжений и токов. Через цепь из последовательно соединенных элементов протекает один и тот же ток. Напряжение на элементах, как и выделяемая мощность, — распределяется согласно собственным сопротивлениям. При этом ток равняется частному напряжения и сопротивления, т.

После того как составили план расположения точечных светильников на потолке, в подсветке шкафа, приходится задуматься об их электрическом подключении. Как подключить точечные светильники, по каким схемам, какими проводами и кабелями — обо всем этом дальше.

У людей, чья работа связана с электрикой, люди такой профессии сталкиваются с различными электрическими соединениями:. Каждый человек сам по себе индивидуален и делает все по своему, — также, это наблюдается и по части электрики. При работе, следует обращать свое внимание, как допустим соединен:. Если выключатель подключен к нейтральному проводу, то в процессе выполнения электрических соединений, — Вы можете попасть под напряжение. Работать будем по схемам и по наработке своей практики, Вы уже научитесь сами представлять в уме электрические схемы:. Включение и отключение осуществляется для всех шести ламп. Все лампы подключены параллельно.

Перед человеком, слабо разбирающимся в электричестве, возникают проблемы подключения нескольких лампочек. Когда проводка уже сделана, вся работа заключается в замене перегоревших ламп. Но бывают ситуации, когда нужно добавить еще одну или более лампочек к существующей системе. Здесь уже понадобятся элементарные знания электротехники и умение составить схему подключения.


Параллельная схема подключения ламп

Здравствуйте, уважаемые читатели сайта sesaga. Идею этой статьи подсказал Денис Ж, за что ему большое спасибо. Люди, не сильно разбирающиеся в электричестве, сталкиваются с проблемой самостоятельного подключения обычных ламп накаливания количеством трех и более штук, а бывают ситуации, когда необходимо к существующей проводке добавить свою. Например, Вы купили кухонный гарнитур или шкаф купе, и естественно все это с подсветкой.


Поиск данных по Вашему запросу:

Параллельная схема подключения ламп

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Способы подключения светильников в жилых зданиях

Преимущества и недостатки параллельного и последовательного соединения лампочек


Лампы накаливания — это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков.

Далее напомним нашим читателям:. Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы. Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп.

Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода. Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы. Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток.

В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения.

В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек. На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения.

При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Чем слабее, тем ярче. При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей.

По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения или токи и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно. Можно, конечно же, подключить каждую лампочку к регулятору напряжения ЛАТРу или диммеру.

Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле. Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения.

При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения В.

Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения.

Оно существенно больше падения напряжения питания на каждой из них. Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных. Последовательное соединение других типов ламп также возможно.

Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.

Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения. Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них.

Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света.

Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению. Сохранить моё имя, email и адрес сайта в этом браузере для последующих моих комментариев. Далее напомним нашим читателям: на каких схемах лампы соединены параллельно; на каких — последовательно; и в чем суть различных соединений ламп. Люстра с большим числом лампочек Содержание.

Понравилась статья? Поделиться с друзьями:. Вам также может быть интересно. Лампы накаливания 0. Лампочки накаливания, несмотря на появление конкурирующих с ними энергосберегающих и светодиодных световых излучателей, по-прежнему. Искусственный свет сопровождает людей уже многие тысячи лет. Дольше всего использовался свет пламени костра. Галогеновые лампы значительно превосходят своих предшественников по многим параметрам и характеристикам.

Данные лампы имеют. Многие владельцы частных домов и квартир предпочитают всячески управлять освещением в своем помещении. Любой взрослый человек хотя бы раз в жизни сталкивался с простейшей, на первый взгляд,.

Добавить комментарий Отменить ответ.


Последовательное и параллельное соединение лампочек — схемы применения в быту.

У людей, чья работа связана с электрикой, люди такой профессии сталкиваются с различными электрическими соединениями:. Каждый человек сам по себе индивидуален и делает все по своему, — также, это наблюдается и по части электрики. При работе, следует обращать свое внимание, как допустим соединен:. Если выключатель подключен к нейтральному проводу, то в процессе выполнения электрических соединений, — Вы можете попасть под напряжение. Речь у нас конечно же не об этом, а о параллельном и последовательном соединениях лампочек, приведенный пример, в какой-то мере также имеет отношение к этой теме. Работать будем по схемам и по наработке своей практики, Вы уже научитесь сами представлять в уме электрические схемы:. Данная электрическая схема рис.

быть использовано параллельное и последовательное.

Различные способы подключения одной, двух и более ламп

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой. Параллельное и последовательное и соединение ламп в быту. Иногда на практике нам приходится сталкиваться с необходимостью параллельного или последовательного соединения ламп накаливания. Нередко данная задача встает и в быту, причем это касается не только ламп в люстре. Кто-то может захотеть улучшить освещенность на кухне, а кому-то в голову придет светлая мысль продлить срок службы лампы, заменив ее двумя соединенными последовательно. Давайте рассмотрим, как осуществляются эти соединения, на что важно обратить внимание, и каких принципов стоит придерживаться, выполняя различные соединения.

Последовательное и параллельное соединение лампочек

Адрес: Нижний Новгород, Ленинский район, ул. Ростовская д. Очень часто возникают ситуации, когда в доме или квартире необходимо произвести определенные электромонтажные работы. Из них, наиболее распространенной является схема подключения выключателя к лампочке.

Нельзя сказать, что они отличаются принципиально, но в схемах подключения задействованы различные устройства. ЭМПРА это электромагнитный пускорегулирующий аппарат, а по сути, обычный дроссель.

Схемы подключения точечных светильников

Электрика и электрооборудование, электротехника и электроника — информация! В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение. При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Схемы подключения люминесцентных ламп

Лампы накаливания — это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Далее напомним нашим читателям:. Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы. Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.

Схема последовательного соединения — Всё о электрике в доме Параллельное и последовательное соединение лампочек У людей, чья работа связана.

Как подключить лампочки в подвесном потолке

Параллельная схема подключения ламп

Нет ничего проще для электрика, чем подключить светильник. Давайте заранее договоримся, что будем рассматривать как пример освещение в сетях V AC, эта информация справедлива и для других напряжений и токов. Через цепь из последовательно соединенных элементов протекает один и тот же ток. Напряжение на элементах, как и выделяемая мощность, — распределяется согласно собственным сопротивлениям.

Здравствуйте, уважаемые читатели сайта sesaga. Сегодня мы рассмотрим практичные схемы последовательного и параллельного соединения ламп накаливания. В статье схемы подключения трех и более ламп я рассказывал про параллельное соединение, а вот про последовательное упустил. В этой статье мы рассмотрим оба вида соединений используемых в быту. Пойдем от простого к сложному. Обыкновенная лампа на принципиальных схемах обозначается таким образом:.

Вот вы въехали в новую квартиру либо же просто захотели поменять старые надоевшие светильники в своем жилище на более новые. Может быть, вы решили вместо одной маленькой люстры с одной лампой накаливания повесить большую люстру с четырьмя или пятью лампочками.

В этом случае рекомендуется отдавать предпочтение параллельной схеме соединения лампочек, которую Вы должны еще знать со школьного курса физики. Если Вы забыли, как выглядит такой вариант электромонтажа, рекомендуем освежить память, взглянув на предоставленный ниже пример! Все довольно просто — на вводе у нас фаза, заземление и ноль. Все три провода нужно подвести к патронам в соответствии с этой схемой. На электрической схеме параллельное соединение лампочек в цепи может быть обозначено следующим образом:. В этом случае Вы намучаетесь при поиске неисправности, так как если перегорит одна лампа накаливания, погаснут все принцип как у гирлянды. Как Вы видите, все довольно просто и с электромонтажом справится даже чайник в электрике!

Хлопот с заменой светильника в уже функционирующей проводке не существует. Но для рядового потребителя трудности возникают при дополнении действующей системы новыми лампами. В этом случае выходом будет параллельное подключение лампочек в соответствии с правилами производства электротехнических работ.


Как соединить светодиодные лампы последовательно или параллельно. Как подключить точечные светильники параллельно

Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:

  • на каких схемах лампы соединены параллельно;
  • на каких – последовательно;
  • и в чем суть различных соединений ламп.

Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.

Электрическая цепь с последовательным соединением

Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.

Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.

Сделаем последовательное соединение лампочек:

  • укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
  • выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
  • скручиваем концы двух выбранных проводов.


Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.

На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.

Чем слабее, тем ярче

При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.

Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.

  • При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.

Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.

Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.



Перед последовательным соединением

Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.

  • Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.

Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.

Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.


Лучше соединять параллельно

Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.

  • Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
  • Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.

Когда проводка в квартире или доме уже присутствует и нет надобности подключать дополнительные источники света, то вопрос — как подключить лампу, не является актуальным. Но как же выполнить эту работу когда появляется такая необходимость. Тут без элементарных знаний электротехники и умения составить принципиальную, казалось бы, элементарную схему уже не обойтись.

Все источники света люминесцентные (экономки), светодиодные светильники могут быть подключены, как в принципе и все имеющиеся в электрической цепи сопротивления, параллельно, последовательно, смешанно. Смешанное соединение не используется для подключения ламп, так как в нём просто нет необходимости. А вот на параллельном и последовательном подключении стоит остановить своё внимание поподробнее.

Последовательное и параллельное подключение двух и более источников света

Для того чтобы подключить самую простую лампочку накаливания, как в принципе и любую другую, нужно подключить её один контакт к фазе, а другой к нулю, самому распространённому в бытовых условиях стран СНГ переменному напряжению 220 вольт.

Параллельное подключение устройств освещения подразумевает под собой подключение двух и более источников светового потока в параллель, то есть одни контакты ламп подключаются только к фазе, а все другие только к нулю, как показано на рисунке 1.

Через каждую лампочку пройдёт ток, который будет зависеть от её мощности, так же как и яркость светового потока, излучаемого ими, будет тоже зависеть от мощности каждой лампы. Естественно, что ток I будет равен сумме всех трёх токов, поэтому диаметр сечения основных проводников следует выбирать согласно ему. Это подключение считается самым распространённым и приемлемым, так как к нему можно будет, при необходимости в будущем, добавлять источники света и они не будут влиять на уже установленные.

При последовательном соединении, изображённом на рисунке, ток, протекающий по одной лампочке, будет зависеть от мощности, каждого источника света, а напряжение на них будет разделено на количество ламп и при данном входящем напряжении 220 вольт, будет равняется 110 вольт на каждом источнике света.

Такое подключение нужно обязательно выполнять со светильниками, которые имеют равную мощность. Рассмотреть это можно на примере двух ламп накаливания. Так как если подключить одну лампу 20 Ватт, а другую, например, на 200 Ватт, то лампа с меньшей мощностью тут же выйдет из строя, так как по ней пройдёт ток такой же, как и во второй лампе мощностью 200 Ватт, а это в 10 раз больше её номинала. Такое подключение может быть использовано для увеличения срока службы ламп накаливания, например, в подъездах и на лестничных клетках. Подключив две лампы на 220 вольт и мощностью, например, по 60 Ватт, они будут гореть вполсилы и прослужат очень долго. Нужно учесть, что это возможно только при подключении ламп накаливания. Последовательное подключение двух и более светодиодных ламп (светильников) и экономичных ламп нецелесообразно, так как они и так обладают довольно большим сроком службы.

Подключение лампы на один выключатель или на несколько

Как подключить лампу через выключатель? Главным нюансом при подключении является то, что нулевой провод питания непосредственно подключается к сети 220 вольт, а через выключатель разрывается фаза. Это делается для того чтобы можно было смело решать проблемами с патроном осветительного прибора, отключив лишь выключатель. Если подключение двух выключателей выполнить последовательно, то только при нажатии обеих клавиш лампа загорится. Такие виды подключения выключателей освещения очень редко используются, только при определённых индивидуальных условиях.

Интереснее является подключение так называемого проходного выключателя.

Суть такой схемы подключения одной лампы заключается в том, что включение и отключение лампы может быть произведено как от первого, так и от второго выключателя, вне зависимости в каком положении каждый из них. Например, это удобно, допустим, в длинном коридоре при входе в него человек нажимает на клавишу выключателя 2, и спокойно идёт по освещённому помещению, дойдя до конца коридора, не нужно возвращаться для выключения света, а можно лёгким нажатием выключателя 1, установленного в конце коридора, произвести отключение данного источника света. При таком подключении фаза тоже проходит через выключатели.

Усовершенствование освещения путём установки датчика движения

Главная функция установки датчика движения и подключения его к системе освещения, это автоматическое включение освещения без нажатия на клавишу выключателя освещения. То есть человек зашел помещение или в зону срабатывания датчика и свет включился, после ухода свет самостоятельно (автоматически) выключился. При выборе датчика движения необходимо в первую очередь учесть максимальную мощность ламп освещения.

Схема подключения датчика движения тоже не вызывает особых сложностей. Её можно устанавливать как с выключателем, так и без него. Просто при включении контакта выключателя датчик движения выводится из сети освещения, и осветительный прибор включается напрямую без датчика.

В любом случае работая с напряжением обязательно выполнять требования техники безопасности, а в частности:

  • проверять наличие и отсутствие напряжения на токоведущих элементах, к которым человек дотрагивается при монтаже;
  • автоматы питания освещения должны быть под замком;
  • работы производить исправным инструментом.

Видео о подключении ламп

Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.

ВАЖНО!!! Опытный электрик слил в сеть секрет, как платить за электроэнергию вдвое меньше, легальный способ…

На сегодняшний день их существует огромное количество, различной мощности (сверхяркие ), работающих от постоянного напряжения, которые можно подключать тремя способами:

  1. Параллельно.
  2. Последовательно.
  3. Комбинированно.

Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.

Основные принципы подключения

Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.

Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть . Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.

Как определить полярность?

Для решения вопроса существует всего 3 способа:

С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью . В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.

Способы подключения

Условно, подключение происходит по 2 способам:

  1. К стационарной сети промышленной частоты (50Гц) напряжением 220В;
  2. К сети с безопасным напряжением величиной 12В.

Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.

Рассмотрим каждый из вышеприведенных примеров по отдельности.

Подключение светодиодов к напряжению 220В

Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:

в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.

Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:

Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.

После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).

Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:

На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.

Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.

Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:


Подключение светодиодов к сети 12В

12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.

Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.

Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:

В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:

  • R = 1,3 кОм;
  • P = 0,125Вт.

Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.


Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:

  • Последовательное.
  • Параллельное.

Последовательное подключение

При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:


В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.

Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).

Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В — падение напряжения.

После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).

Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.

Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных применяют смешанное подключение. Что за недостаток, разберем ниже.

Недостатки последовательного подключения
  1. При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
  2. Для питания большого количества led нужен источник с высоким напряжением.

Параллельное подключение

В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.


Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002).

Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).

Это глубокое заблуждение!!! Почему? Ответ Вы найдете ниже

Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.

Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.

Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.


Недостатки параллельного подключения:
  1. Большое количество элементов;
  2. При выходе одного диода из строя увеличивается нагрузка на остальные.

Смешанное подключение

Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:


Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.

Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.

Как подключить мощный светодиод?

Для работоспособности мощных светоизлучающих диодов, так же, как и простых нам потребуется источник питания. Однако в отличии от предыдущего варианта, он должен быть на порядок мощней.

Чтобы засветить мощный светодиод номиналом 1W, источник питания должен выдерживать не менее 350 мА нагрузки. Если номинал 5W, то источник питания постоянного тока должен выдержать нагрузку тока не менее 1,4А.

Для корректной работы мощного светодиода обязательно необходимо использовать интегральный стабилизатор напряжения типа LM, который защищает его от скачков напряжения.


Если необходимо подключить не один, а несколько мощных LED, рекомендуем ознакомиться с правилами последовательного и параллельного подключения, которые были описаны выше.

Ошибки при подключении

Видео

Ошибки подключения могут повлечь за собой неприятные последствия, от банальной поломки светодиодов, до нанесения себе повреждений. Поэтому, настоятельно рекомендуем посмотреть видео, где разбирают часто встречающиеся ошибки.

Заключение

Прочитав статью можно сделать вывод, что все светодиоды, вне зависимости от рабочего напряжения, всегда подключаются параллельно или последовательно — школьный курс физики. Еще стоит помнить, что никакой светодиод не подключается напрямую в сеть 220В, всегда нужно использовать защитные элементы в схеме подключения. Тип применяемых защитных элементов зависит от вида подключаемого светоизлучающего диода.

Секция Физика

Номинация: Учебные проекты

Параллельное соединение лампочки и электродвигателя в повседневной жизни и техника безопасности при работе с электроприборами.

Научный руководитель: Колегойда Е.А., учитель начальных классов

Актуальность: Последовательное соединение ламп накаливания в домашнем быту используется редко.

Ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным .

Если подать напряжение питания 220В на концы L и N , то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

Примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на рынок, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.

На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»

Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.

Именно «звездой» делают разводку по квартире при монтаже розеток.

Параллельное включение ламп применяется и при освещении дорог. В частности, электрические лампы и двигатели, предназначенные для работы при определенном напряжении, всегда включают параллельно.
На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.

Цель моей исследовательской работы: показать преимущества параллельного соединения ламп и предложить рекомендации по технике безопасности при работе с электричеством.

Практическая ценность проделанной работы: при параллельном соединении элементов требуется больше проводов в реальной жизни, но это компенсируется тем, что если ломается один элемент, то все остальные работают. При этом весь ток будет проходить через эту вторую лампу. Это очень удобно. Если елочная гирлянда имеет параллельно включенные лампочки, и одна из них перегорает, то вы можете этого и не заметить. А когда заметите, просто заменить погасшую лампочку.

Так, электроприборы в наших домах включаются в цепь параллельно. И если один из них выходит из строя, то остальные остаются в рабочем состоянии.

Эквивалентным сопротивлением называется сопротивление, которое может заменить все элементы, входящие в данную цепь.

Стоить отметить, что при параллельном соединении эквивалентное сопротивление будет достаточно малым. Соответственно, сила тока будет достаточно большой. Это стоит учитывать при включении в розетки большого количества электрических приборов. Ведь тогда сила тока возрастет, что может привести к перегреванию проводов и пожарам.

Исследования:

1. Для представления проекта параллельного соединения лампочки и электродвигателя я установил пропеллер, затем замкнул выключатель, электродвигатель начнет вращаться, а лампочка загорится. Если выкрутить лампочку, замкнуть выключатель, электродвигатель продолжит работать.

2. Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти. Для этого я собрал конструктор со звуком звездных войн и светом, управляемый сенсором. Заменил кнопку сенсорной пластиной. Прерывистое прикосновение пальцев к пластине позволяет управлять звездными войнами.

Полученные результаты и их оценка:

Первый эксперимент показал, что параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение, так если ломается один элемент, то все остальные работают.

Второй эксперимент показывает, что человеческое тело имеет не очень большое сопротивление (1кОм) и обладает свойствами электрического конденсатора (это устройство для накопления заряда и энергии ) . Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти.

Электричество – друг человечества. Однако, при неправильном обращении к нему, такая дружба может оказаться очень опасной. Чтобы снизить вероятность поражения электрическим током, необходимо соблюдать элементарные правила безопасной работы

Таким образом, я предлагаю рекомендации по технике безопасности при работе с электричеством.

Первая помощь при поражении электрическим током.

Электрический ток ничем не пахнет, не имеет цвета, не издает звуков и не осязается, поэтому предупредить человека о своем присутствии не может. О нем просто надо знать или быть предельно осторожным. При поражении электрическим током опасность усугубляется неспособностью пострадавшего помочь себе.

Обеспечь свою безопасность. Надень сухие перчатки (резиновые, шерстяные, кожаные и т.п.), резиновые сапоги. По возможности отключи источник тока. При подходе к пострадавшему по земле иди мелкими, не более 10 см, шагами.

Сбрось с пострадавшего провод сухим токонепроводящим предметом (палка, пластик). Оттащи пострадавшего за одежду не менее чем на 10 метров от места касания проводом земли или от оборудования, находящегося под напряжением.


Вызови (самостоятельно или с помощью окружающих) «скорую помощь».

Определи наличие пульса на сонной артерии, реакции зрачков на свет, самостоятельного дыхания.

При отсутствии признаков жизни проведи сердечно-легочную реанимацию.

При восстановлении самостоятельного дыхания и сердцебиения придай пострадавшему устойчивое боковое положение.

Если пострадавший пришел в сознание, укрой и согрей его. Следи за его состоянием до прибытия медицинского персонала, может наступить повторная остановка сердца.

Освобождение пострадавшего от тока.

Прежде всего необходимо быстро освободить пострадавшего от действия электрического тока, т.е. отключить цепь тока с помощью ближайшего штепсельного разъема, выключателя (рубильника) или путем вывертывания пробок на щитке.
В случае отдаленности выключателя от места происшествия можно перерезать провода или перерубить их (каждый провод в отдельности) топором или другим режущим инструментом с сухой рукояткой из изолирующего материала.
При невозможности быстрого разрыва цепи необходимо оттянуть пострадавшего от провода или же отбросить сухой палкой оборвавшийся конец провода от пострадавшего.
Необходимо помнить, что пострадавший сам является проводником электрического тока. Поэтому при освобождении пострадавшего от тока оказывающему помощь необходимо принять меры предосторожности, чтобы самому не оказаться под напряжением: надеть галоши, резиновые перчатки или обернуть свои руки сухой тканью, подложить себе под ноги изолирующий предмет — сухую доску, резиновый коврик или, в крайнем случае, свернутую сухую одежду.
Оттягивать пострадавшего от провода следует за концы его одежды, к открытым частям тела прикасаться нельзя. При освобождении пострадавшего от тока рекомендуется действовать одной рукой.
Если он находится на стремянке, подставке или каком-либо ином приспособлении, надо принять меры, чтобы предотвратить ушибы или переломы при падении.
Если человек попал под напряжение выше 1000 В такие меры предосторожности недостаточны. Необходимо обратиться к специалистам, которые немедленно снимут напряжение.
Первая помощь пострадавшему
Меры первой помощи зависят от состояния пострадавшего после освобождения от тока.
Для определения этого состояния необходимо:
— немедленно уложить пострадавшего на спину;
— расстегнуть стесняющую дыхание одежду;
— проверить по подъему грудной клетки, дышит ли он;
— проверить наличие пульса (на лучевой артерии у запястья или на сонной артерии на шее;
— проверить состояние зрачка (узкий или широкий).
Широкий неподвижный зрачок указывает на отсутствие кровообращения мозга.
Определение состояния пострадавшего должно быть проведено быстро, в течение 15 — 20 секунд.
1. Если пострадавший в сознании, но до того был в обмороке или продолжительное время находился под электрическим шоком, то ему необходимо обеспечить полный покой до прибытия врача и дальнейшее наблюдение в течение 2-3 часов.
2. В случае невозможности быстро вызвать врача необходимо срочно доставить пострадавшего в лечебное учреждение.
3. При тяжелом состоянии или отсутствии сознания нужно вызвать врача (Скорую помощь) на место происшествия.
4. Ни в коем случае нельзя позволять пострадавшему двигаться: отсутствие тяжелых симптомов после поражения не исключает возможности последующего ухудшения его состояния.
5. При отсутствии сознания, но сохранившемся дыхании, пострадавшего надо удобно уложить, создать приток свежего воздуха, давать нюхать нашатырный спирт, обрызгивать водой, растирать и согревать тело. Если пострадавший плохо дышит, очень редко, поверхностно или, наоборот, судорожно, как умирающий, надо делать искусственное дыхание.
6. При отсутствии признаков жизни (дыхания, сердцебиения, пульса) нельзя считать пострадавшего мертвым. Смерть в первые минуты после поражения — кажущаяся и обратима при оказании помощи. Пораженному угрожает наступление необратимой смерти в том случае, если ему немедленно не будет оказана помощь в виде искусственного дыхания с одновременным массажем сердца. Это мероприятие необходимо проводить непрерывно на месте происшествия до прибытия врача.
7. Переносить пострадавшего следует только в тех случаях, когда опасность продолжает угрожать пострадавшему или оказывающему помощь.

Сопротивление тела человека. От величины сопротивления зависит величина тока, проходящего через тело человека в случае попадания под напряжение. Чем больше сопротивление, тем лучше. Однако сопротивление тела человека имеет свойство меняться в меньшую или большую сторону. Уменьшение сопротивления зависит от таких факторов, как влажность организма, наличие алкоголя в крови, эмоциональное состояние человека и т.д. Здоровые и физически крепкие люди противостоят электричеству лучше больных и ослабленных, причем степень поражения во многом определяется состоянием человека. Пот, возбудимость или переутомление снижают сопротивляемость организма.

Смертельным фактором является сила тока, а не напряжение, причем в отличие от переменного тока к постоянному человек быстро привыкает, а вот переменный крайне опасен. Существует порогово ощутимый ток — 0,6-1,5 мА. Ток в 10-15 мА приводит к тому, что пострадавший уже не способен убрать руки от провода или электроприбора (неотпускающий ток). При 50 мА повреждаются органы дыхания и сердечно-сосудистая система, 100 мА (промышленный ток, к частным домам не подводящийся) вызывают остановку сердца.

Таким образом, чем дольше длится воздействие тока на человека, тем вероятнее летальный исход, поскольку сопротивляемость тела уменьшается.

Как правило, электрическую разводку делают как можно выше от пола, поэтому, чтобы упростить себе работу, полезно обзавестись складной лестницей.

    перед началом ремонтных работ, связанных с опасностью получить удар электрическим током, следует выключить групповой автомат на щитке в квартире или на лестничной клетке;

    надо разместить на электрощите на лестничной клетке предупреждающую табличку, иначе сосед может случайно включить электричество в самый неподходящий момент;

    перед тем как приступить к работам, с помощью индикаторной отвертки нужно удостовериться в действительном отсутствии электричества в сети;

    предохранители (пробки), которые сейчас в строительстве не используют, еще установлены в некоторых домах, поэтому следует помнить, что заменяют их только при перегорании. Кустарный ремонт в виде установки проволочек («жучков») может привести к пожару; Использование самодельных предохранителей. В старых жилых домах, где для защиты электрической сети применяются предохранители с плавкой вставкой, очень часто домашние умельцы делают самодельные плавкие вставки. Делать это категорически запрещается. Лучше использовать автоматические выключатели, либо поставить пробку-автомат.

    главным условием безопасного использования электроэнергии в быту является хорошее состояние изоляции, электротехники, предохранительных щитков, переключателей, розеток, ламповых патронов, светильников, шнуров. Изоляцию следует регулярно проверять и обновлять при необходимости. Чтобы не повредить ее, не рекомендуется подвешивать провода на гвозди, железные и деревянные предметы, перекручивать их, размещать за газовыми и водосточными трубами, радиаторами, использовать в качестве вешалки, вытаскивать вилку из розетки за шнур, покрывать их краской и белить, укладывать на работающие светильники. Нельзя использовать светильники с поврежденными вилкой, проводом или выключателем;

    покидая квартиру, не забудьте выключить свет и электроприборы, поскольку так не только экономится электричество, но и существенно уменьшается риск возникновения пожара;

    не следует пользоваться переносными светильниками в ванной комнате. Покупая светильник для нее, нужно внимательно прочитать инструкцию, поскольку есть светильники для сырых помещений, в конструкции которых использованы специальные элементы, чтобы сделать их безопасными;

    наиболее внимательно надо подойти к вопросу электробезопасности в помещениях, где обычно находятся дети;

    мощность лампочки в светильнике должна соответствовать допустимому для него пределу. В результате нарушения теплового режима могут произойти короткое замыкание и, как следствие, пожар;

    поскольку проводка в квартире, как правило, скрытая, нельзя произвольно сверлить отверстия и забивать гвозди. Если вы не уверены в том, что в данной зоне не проходят какие-либо провода, используйте особую электродрель с двойной изоляцией;

    осветительные устройства не стоит подвешивать на токоведущих проводах — только на специальных приспособлениях.

    Заземление бытовых приборов. Металлический корпус любой бытовой техники потенциально опасен. Это означает то, что если произойдёт пробой фазы на корпус, то прикосновение к корпусу повлечёт за собой поражение электрическим током. В современной технике вероятность пробоя достаточно мала, но она присутствует и поэтому металлические части необходимо заземлять. Делается это при помощи трёхжильной проводки (фаза, ноль, земля), европейской розетки и европейской вилки.

    Эксплуатация мощных потребителей.
    Если в советские времена нагрузка на проводку была незначительной, то сегодня дела обстоят по-другому. Стиральные машины, пылесосы, постоянно работающие электрические нагреватели воды (бойлеры) приводят к постепенному перегреву старой алюминиевой проводки. Это может привести к повреждению изоляции и возникновению короткого замыкания. Чтобы этого не произошло, можно заменить алюминиевые провода на медные, или увеличить сечение провода.

    Электробезопасность во влажных помещениях. Не стоит пользоваться в ванной комнате электрическими приборами, особенно находясь в воде. Влажные помещения особо опасны, т.к. вода – хороший электропроводник. В крайнем случае, необходимо находиться на безопасном расстоянии от воды. Кроме того, обязательно должны использоваться надёжные аппараты защиты сети, которые в случае короткого замыкания или даже маленькой утечки тока отключат напряжение.

    Использование инструмента и электроинструмента. Т.к. в большинстве случаев проводка выполняется скрытым способом, то любые работы по сверлению или штроблению стен, выполняемые электроинструментом, необходимо выполнять с особой осторожностью, дабы случайно не повредить провода и самому не попасть под напряжение.

    Общие советы по безопасности:
    Следите за целостностью сетевых шнуров бытовой техники, не перегружайте проводку мощными потребителями. Используйте современные комплектующие (выключатели, розетки, щитки). В случае необходимости не поленитесь проконсультироваться по разным электрическим вопросам с опытным электриком.

Д ля проведения 3-го занятия потребуются:
1.Устройство собранное в течении 2-го занятия.
2.Электрический патрон, подобный использованному ранее.
3.Отрезок кабеля ВВГ 2*1.5, длинною около 0,5 метра.
4.Электрическая лампочка.
Подсоединяем патрон к кабелю, вворачиваем лампочку — получаем в результате то же изделие, что и в конце 1-го занятия, за исключением отсутствующей эл. вилки.

Берем устройство, собранное в течении 2-го занятия — аккуратно срезаем изоляцию на участке около 1см. провода, идущего на эл. патрон. Снимаем крышку с выключателя, что бы получить доступ к его электрическим клеммам.



Присоединяем второй патрон с лампочкой номер 2, как показано на рисунке ниже.



Таким образом, один конец оказывается присоединен с помощью скрутки к проводу идущему напрямую к лампочке номер 1. Второй конец присоединяется к клемме выключателя вместе с другим проводом идущим на электрическую лампочку номер 1. Изолируем место скрутки проводов, с помощью изоленты, закрываем крышку-корпус выключателя. Втыкаем эл. вилку в розетку, нажимаем выключатель — обе лампочки горят. Такое соединение называется параллельным.


Эл. схема параллельного подключения выглядит вот так.


Особенностью такого соединения, является возможность, задействовать одновременно несколько потребителей электроэнергии, рассчитаных на одно и то же напряжение. Эл. лампочек может быть не две, как в нашем примере, а гораздо больше.

На яркость свечения отдельно взятой лампы, увеличение их количества (до определенного предела) практически не влияет, напряжение эл. сети уменьшается незначительно. Но потребление электроэнергии в сети возрастает с каждым, дополнительно подключенным приемником электроэнергии — растет сила тока, начинают греться провода. Что бы предотвратить возгорание изоляции, при превышении эл. током определенного порога, срабатывает автоматический выключатель, и все гаснет.

В нашем быту, как правило, мы постоянно сталкиваемся именно с таким подключением эл. устройств. Различные электроприборы, группы точечных, и других светильников — все это примеры параллельного соединения.
Можно сказать, что все электроприемники, например, в отдельно взятой квартире так или иначе, в итоге оказываются подключенными параллельно, к жилам вводного питающего кабеля.

В случае, если Вас, заинтересовала эта тема, с теоретической точки зрения, дополнительную интересующую информацию, легко почерпнуть в любом учебнике по электротехнике. Параллельное и последовательное соединение, подробно описано там с позиции законов Кирхгофа и Ома, со всеми формулами и выкладками. Несколько упрощенный вариант этой темы вы можете посмотреть

Необязательное лирическое дополнение.

В моем детстве (конец 70-х), огромной популярностью пользовались, самодельные цветомузыкальные установки. Радиолюбители собирали свои электронные схемы, как правило, используя в выходных каскадах тиристоры ку202н. Это позволяло, применять в качестве источника света, самые обычные лампочки 220-240 вольт. Их покрывали разноцветными лаками, устанавливали в рассеивающие экраны, автомобильные фары — очень ярко и очень красиво. К тому времени, у меня не было, ни достаточных познаний в радиоэлектронике, ни тиристоров, ни магнитофона. Была ламповая радиола Кантата-203, большое количество лампочек от карманного фонаря(2,5 вольт) и огромное желание что-нибудь сделать.

Опытным путем было определено — маленькая лампочка подсоединенная к выходу динамика начинала моргать в такт музыке, чем громче, тем ярче. Лампочка маленькая — света, соответственно, тоже мало. Что же делать? Тут и пришло на помощь параллельное соединение. Паять к тому времени, я уже немного умел (научили на уроках «труда»),взял два достаточно длинных проводка, да и припаял с десяток лампочек. Один проводок к цокольным контактам, второй к боковым. Подключил к «Кантате», влупил громкость на полную — красота! Половину лампочек покрасил зелеными чернилами, половину красными. Прилепил это все пластилином к большой стекляшке от старой люстры, найденной на помойке — настоящая получилась вещь!

Большее количество лампочек добавлять не стал (а хотелось!) — яркость начинала падать, звук в динамиках — хрипеть. Даже у Советских ламповых радиол, запас мощности был ограничен. Соединял я в дальнейшем параллельно и динамики, радиола выдержала, но кассетный магнитофон «Электроника» моего друга, таких издевательств не вынес — сдох. Но точечные светильники и силовая сеть 220 вольт, это совсем другое дело. Можно брать их хоть четыре(светильников), хоть шесть — да и подключать, к двум проводам, торчащим из потолка (где был старый светильник), самое главное делать это очень надежно.


Использование каких — либо материалов этой страницы, допускается при наличии ссылки на сайт

Схема параллельного подключения ламп с фото

Вот вы въехали в новую квартиру либо же просто захотели поменять старые надоевшие светильники в своем жилище на более новые. Может быть, вы решили вместо одной маленькой люстры с одной лампой накаливания повесить большую люстру с четырьмя или пятью лампочками. При таких условиях нередко возникает надобность выполнить одновременное подключение нескольких источников света к одному единственному выключателю. Здесь, разумеется, пригодится параллельная схема подключения лампочек.

В целом – ничего сложного, такой принцип подключения многие помнят еще со школьных уроков по физике. Но если вы уже давно забыли школьный курс – не беда. Мы напомним вам, как выглядит такой способ монтажа и каким образом он осуществляется.

Советуем прочитать — Как правильно выбрать светодиодные лампы для дома

Особенности параллельного подключения ламп

По сути, параллельное соединение элементарно: у нас имеется одна фаза на входе, ноль и «земля». Каждый из перечисленных проводников подводится к каждому патрону лампочки и соответствующим образом подсоединяется. Демонстрируем наглядную схему подобного подключения:

Схема параллельного подключения светильников

На стандартной упрощенной электрической схеме такого рода соединение будет изображено следующим образом:


Преимущество именно такого метода подключения лампочек к электрической сети в том, что при выходе из строя одного элемента цепочки (допустим, у вас перегорела лишь одна лампа накаливания) все остальные элементы продолжают спокойно работать.

Здесь сразу же в противовес вспоминается принцип работы новогодней гирлянды, знакомый всем нам еще из детства – последовательное подключение элементов.

При таком способе подключения поломка одной лампочки ставит крест на работе всех остальных. Соответственно, не стоит прибегать к подобному альтернативному методу при монтаже освещения у себя дома. Ведь вследствие последовательного подключения вы весьма намучаетесь с поиском причины поломки при перегорании одной из ламп, так что никакого смысла в этом, разумеется, нет.

Понравилась статья? Поделиться с друзьями:

Параллельное и последовательное соединение лампочек

При самостоятельно обустройстве системы освещения может быть использовано параллельное и последовательное соединение лампочек.

Оба варианта имеют характерные достоинства и некоторые недостатки, поэтому к выбору типа подсоединения нужно подойти очень внимательно.

Последовательное и параллельное подключение ламп

Подключение любой, даже самой простой лампочки, предполагает подсоединение одного контакта на фазу, а второго – к нулю в условиях стабильного бытового напряжения в 220В.

При самостоятельном выполнении параллельного подключения в обязательном порядке соблюдается правило, при котором одни контакты всех ламп подсоединяются на фазу, а все другие контакты – исключительно к нулю.

В этом случае, через каждый источник света проходит электрический ток, показатели которого зависят от мощности лампы.

Такой способ подключения принято считать наиболее удобным и распространённым, что обусловлено возможностью со временем легко дополнять осветительную систему другими лампами без ущерба для уже установленных источников света.

Последовательное подсоединение предполагает разделение подаваемого напряжения на все источники света, мощность которых примерно равна. При таком способе важно учитывать, что лампа, имеющая слишком низкую мощность по сравнению с другим подключаемым источником света, очень быстро выйдет из строя.

Как показывает практика, выполнение последовательного подсоединения двух или более источников света светодиодного или люминесцентного является нецелесообразным, что обусловлено заложенной конструктивной долговечностью.

Лампочки, соединенные параллельно

Параллельное соединение может быть лучевым и шлейфным:

  • первый вариант предполагает подсоединение отдельного двухжильного или трёхжильного кабеля на каждый источник света;
  • второй вариант заключается в подсоединения «фазы» и «нейтрали» от щитка к первому источнику света и далее, кроме последнего осветительного прибора, к которому подключается по два кабеля.

Параллельное соединение лампочек

Лучевая схема является более надежной, но с большим расходом кабеля, и схождением в одной точке значительного количество электрических проводов. Шлейфное подсоединение отличается тем, что при сбое на определенном участке, все расположенные дальше светильники перестают работать.

Основным преимуществом параллельного лучевого соединения осветительных приборов является сохранение работоспособности всех источников освещения при выходе из строя какой-либо одной лампы.

Лампочки, соединенные последовательно

Последовательный вариант соединения ламп в бытовых условиях используется достаточно редко, что обусловлено особенностями эксплуатации осветительных приборов от электрической сети в 220В.

При последовательном типе соединения, подключение каждого последующего резистора к предыдущему осуществляется с образованием неразрывной цепи, но без наличия разветвлений. Общие показатели напряжения, приложенного к электрической цепи, равняется суммарному напряжению на всех элементах, которые входят в эту цепь.

Последовательное соединение лампочек и параллельное – схема

Например, при общем напряжении в 220В, количество последовательно соединяемых низковольтных осветительных приборов, которые рассчитаны на потребление в 10В, может составлять 22 штуки.

Способ последовательного соединения носит бытовое название «гирляндный», поэтому обрыв даже на одном из участков сопротивления способствует выключению или «разрыву» всей электрической цепи.

Одним из наиболее эффективных источников освещения является натриевая лампа высокого давления, заявленный срок эксплуатации которой 15000 часов.

Что такое диммер для ламп накаливания и как правильно выбрать прибор, читайте тут.

Обзор основных типов поломок люстр с пультом д/у читайте на этой странице. Эта статья поможет вам самостоятельно наладить люстру.

Типы ламп и схемы подключения

Подсоединение традиционных ламп накаливания, как правило, не вызывает особых сложностей, но при подключении осветительных приборов галогенного и люминесцентного типа, существует целый ряд существенных отличий, который обязательно должны учитываться.

Например, запитывание галогенных ламп пониженным напряжением позволяет обезопасить эксплуатацию таких осветительных приборов, а лампочки в этом случае, должны подключаться к вторичной обмотке на 12В параллельно, при помощи специальных клеммных колодок.

Лампы накаливания все больше уходят в прошлое. Как выбрать энергосберегающую лампочку – основные виды ламп и критерии выбора.

Знаете ли вы для чего нужен балласт для люминесцентных ламп? Об этом вы можете узнать тут.

Люминесцентные лампы характеризуются так называемым «эффектом мерцания», поэтому должны эксплуатироваться с применением стандартных пускорегулирующих устройств.

В этом случае целесообразно использовать параллельный вариант подключения нескольких источников света к сети с переменным напряжением, что способствует снижению суммарной пульсации исходящего светового потока.

Видео на тему

Основные схемы подключения ламп | Полезные статьи

О том, как подключать к электросети обыкновенные лампочки, знают практически все, но вот подключение низковольтных галогенных или люминесцентных ламп часто становится проблемой. В большинстве случаев используется иная схема подключения лампы — сложная, но более экономичная.

Подключение галогенных ламп

Рисунок 1. Схема подключения галогенной лампы через трансформатор В целях повышения безопасности эксплуатации и экономии электроэнергии все чаще применяется схема подключения лампы освещения, предполагающая использование пониженного напряжения. Низковольтные галогенные лампы такие же яркие, как и обычные, но при этом потребление энергии существенно сокращается.

Подключение галогенных ламп осуществляется при помощи специальных источников питания (трансформаторов) на 6 В, 12 В или 24 В. Кроме того, использование такой схемы подключения с применением понижающего трансформатора продлевает жизнь лампочек.

Сама схема подключения довольно проста: галогенные лампы соединяются между собой параллельно и подсоединяются к трансформатору, при этом общая мощность всех ламп не должна превышать мощности используемого трансформатора. Управление освещением осуществляется простым выключателем, подключаемым к трансформатору на стороне 220 В.

 

Единственное, чем такая схема подключения галогенных ламп неудобна — нужно где-то поместить трансформатор, что не всегда удобно, несмотря на небольшие размеры устройства.

Подключение люминесцентных ламп

Рисунок 2. Схема подключения одной люминесцентной лампы через стартер Рисунок 3. Схема подключения двух люминесцентных ламп через стартер Люминесцентные лампы проще всего включать в электрическую сеть по распространенной стартерной схеме. Такая схема подключения дневной лампы не только проста, но и эффективна. По подобной схеме можно подключать и несколько ламп (тандемная схема).

Здесь применяется специальный «пускатель» — стартер, который представляет собой биметаллический контакт. Есть два распространенных типа стартеров, на которых может базироваться схема подключения люминесцентных ламп: рассчитанных на сетевое напряжение в 127 В и 220 В.

 

Способы подключения ламп

Рисунок 4. Последовательное подключение ламп Галогенные, люминесцентные и прочие энергосберегающие лампы можно подключать двумя способами: последовательно и параллельно.

Последовательное подключение. Подразумевает подключение нуля и фазы к первой лампе, подключение к ней следующей и т. д. Эта схема применяется довольно редко, так как имеет ряд недостатков: уменьшение яркости ламп, а также тот факт, что если одна лампа в цепи перегорит, все последующие за ней тоже перестают работать.

 

Рисунок 5. Параллельное подключение ламп Параллельное соединение. Подразумевает, что все элементы электрической цепи будут своими контактами подключены к фазе и нулю. Если в такой схеме перегорит одна лампа, остальные будут и дальше гореть.

 

Кабельно-проводниковая продукция для подключения ламп

Как правило, для подключения большинства типов ламп вполне достаточно использование медного многожильного провода с сечением жил 0,5–1,5 мм (например, ПВС 2х1,5 или ПВС 3х1,5).

Электропроводка балласта — электрическая 101

Для работы люминесцентных ламп

требуется балласт. Цепь люминесцентной лампы включает в себя балласт, провода, патроны и лампы.

Лампа

против лампы

Электрики обычно называют лампочку лампой. Производители лампочек используют термин «лампа», когда речь идет о люминесцентных лампах. На этой странице мы будем называть люминесцентную лампу лампой или трубкой.

Индивидуальные и общие провода балласта

Каждый отдельный провод балласта подсоединяется к патрону на одной стороне каждой трубки. Общий провод(а) подключается ко всем патронам на другой стороне трубок.

Цвета проводов балласта

Цвета проводов для отдельных и общих соединений балластов люминесцентных ламп различаются в зависимости от типа балласта, марки и количества поддерживаемых ламп. Балласты имеют определенные цвета для отдельных проводов к патронам и другие цвета для общих проводов к держателям.

Магнитные и электронные балласты

Старые магнитные люминесцентные балласты обычно имеют быстрый пуск и подключаются последовательно. Новые электронные балласты имеют мгновенный пуск (параллельное соединение), быстрый пуск (последовательное соединение), программируемый пуск (параллельное соединение — , диммируемые и балласты CFL.

Быстродействующий пускорегулирующий аппарат в сравнении с пускорегулирующим аппаратом с мгновенным пуском

Когда пускорегулирующий аппарат для быстрого пуска (соединенный последовательно) приводит в действие несколько ламп, а одна лампа выходит из строя, цепь размыкается, и другие лампы не загораются.

Когда балласт мгновенного включения (соединенный параллельно) управляет несколькими лампами в цепи, лампы работают независимо друг от друга. Если одна лампа выходит из строя, остальные могут продолжать работать, так как цепь между ними и балластом остается неразомкнутой.

С некоторыми 3- и 4-ламповыми запрограммированными пусковыми балластами (соединенными последовательно- параллельно), если одна лампа в одной ветви выйдет из строя, лампа(и) в параллельной ветви будет продолжать работать.

  • ЭПРА для быстрого пуска можно подключать только последовательно в соответствии со схемой на ЭПРА.
  • ЭПРА с мгновенным пуском можно подключать только параллельно в соответствии со схемой на ЭПРА.
  • Изменение проводки люминесцентного светильника с быстрого включения на мгновенное включает замену последовательной проводки на параллельную.

1 Схема балласта быстрого пуска лампы

1 Схема балласта мгновенного пуска лампы

Заземление балласта

Заземление балласта очень важно.Заземление обычно происходит автоматически, если светильник заземлен правильно.

Заземляющий провод от источника питания должен быть подключен к светильнику. Металлический балласт, установленный на металлическом светильнике, автоматически заземлит балласт.

Если балласт имеет клемму заземления, к ней должен быть подключен заземляющий провод.

Двухсторонние светодиодные трубки с прямым проводом 2 лампы Электрические 101

В случае двусторонних светодиодов с прямым проводом линия подключается к патронам на одном конце светильника, а нейтраль — на другом конце.С этими светодиодными трубками можно использовать шунтированные или нешунтированные патроны . При использовании патронов с шунтированием, отличных от , провода обычно нужно подключать только к одной стороне патрона с большинством светодиодных трубок (см. инструкции по подключению).

Внимание! Прямая проводка приведет к тому, что патроны будут запитаны линейным напряжением при включении выключателя освещения. Всегда отключайте питание светильника при установке или замене ламп в светильниках с прямым подключением.

Этикетка модификации приспособления должна поставляться вместе с трубкой. Поместите его на крышку балласта в соответствии с инструкциями.

Балласт мгновенного запуска 2 лампы

Заводская проводка

Прямой светодиодный провод с двумя концами

Схема подключения 2 лампы Устройство мгновенного включения

Отрежьте провода от балласта. Снимите балласт с приспособления (или оставьте его на месте). Используя оранжевые разъемы для проводов, обрежьте провода примерно до 1/2 дюйма.Можно использовать соединители проводов аналогичного размера.

Отдельные провода патрона (синие) подключены к линии.

Общие провода (красные) подключаются к нейтрали.

Эти соединения можно поменять местами. От индивидуального к нейтральному и от общего к линии.

Балласты быстрого пуска 2 лампы

Заводская проводка

Прямой светодиодный провод с двумя концами

Схема подключения 2 лампы Устройство быстрого запуска

Отрежьте провода от балласта.Снимите балласт с приспособления (или оставьте его на месте). Использование разъема желтовато-коричневого провода для линии и разъема оранжевого провода для нейтрали. Обрежьте провода примерно до 1/2 дюйма для нейтрали и от 5/8 до 3/4 дюйма для линии. Можно использовать соединители проводов аналогичного размера.

Отдельные провода патрона (синий и красный) подключаются к линии.

Общие провода (желтые) подключаются к нейтрали.

Эти соединения можно поменять местами. От индивидуального к нейтральному и от общего к линии.

Светодиодные трубки

Direct- Wire Dual- Ended LED Tube Lights 4 Lamp Instant Start

Direct- Wire Dual- Ended LED Tube Lights 4 Lamps Rapid Start

Прямой провод Односторонний Светодиодные трубки

Подключение светодиодных лент «Последовательно» и «Параллельно»

Вы решили использовать светодиодные ленты для своего следующего проекта, или вы даже можете быть в той точке, когда вы готовы все подключить.Если у вас есть несколько светодиодных лент, и вы пытаетесь подключить их к одному источнику питания, вам может быть интересно: должны ли они быть подключены последовательно или параллельно?

Светодиодные ленты имеют маркировку, показывающую, какой стороной подключать положительный, а какой отрицательный (заземляющий) провод, поэтому достаточно просто подключить один светодиодный сегмент к соответствующим проводам питания такого же цвета. Если у вас есть две или более секций светодиодных лент, и вам интересно, как их соединить вместе, читайте дальше, чтобы узнать больше о том, как подключать светодиодные ленты «последовательно» или «параллельно»!

Отказ от ответственности: термины «последовательный» и «параллельный» технически неверны с точки зрения электроники! Мы используем эти термины в этой статье для простоты, но ставим их в кавычки для точности.Пожалуйста, прочитайте конец статьи для всестороннего объяснения.

Как соединить светодиодные ленты «последовательно»

Идея соединения двух секций светодиодной ленты «последовательно», вероятно, является наиболее логичным и простым методом. Вы можете думать об этом как о простом соединении одного конца светодиодной ленты со следующей секцией светодиодной ленты. Если вам просто нужно соединить небольшое расстояние, вам могут пригодиться несколько разъемов без пайки, или вы даже можете соединить большее расстояние с помощью медных проводов, обрезанных до нужной вам длины.Для более длинных пробегов вам нужно следить за падением напряжения, но в противном случае все, что вам действительно нужно сделать, это создать электрическое соединение между положительными и отрицательными медными контактными площадками от одной секции светодиодной ленты к другой


Это быстрый и простой метод, поскольку он не требует создания еще одного отдельного провода для подключения к источнику питания. Вы просто позволяете «прыгать» между двумя секциями светодиодной ленты.

Недостатком является то, что это создает потенциал для дополнительного падения напряжения, что приводит к уменьшению светоотдачи среди светодиодов, наиболее удаленных от источника питания.Причина в том, что последовательное соединение светодиодных лент обеспечивает только один путь прохождения электрического тока. Весь электрический ток для всей установки светодиодной ленты должен проходить через первые несколько дюймов участка светодиодной ленты, что может выступать в качестве узкого места для протекания тока, уменьшая количество напряжения и тока, которые достигают более дальних участков светодиодной ленты. .

Как соединить светодиодные ленты «параллельно»

Альтернативой соединению нескольких секций светодиодной ленты является их «параллельное соединение».Этот метод предполагает создание независимых цепочек секций светодиодной ленты, каждая из которых подключается напрямую к источнику питания.


Как вы можете видеть на диаграмме, это уменьшает количество тока, которое должно пройти через любую данную секцию светодиодной ленты, потому что они подключены непосредственно к источнику питания. Это может значительно помочь в снижении вероятности падения напряжения.

Основным недостатком этого подхода является то, что потребуется немного больше работы с проводкой. Основная проблема заключается в том, что большинство блоков питания будут иметь только по одному положительному и отрицательному выходным проводам, поэтому для подключения их к более чем одной секции светодиодной ленты потребуется разделить этот выход на несколько проводов.Для этой цели доступны специальные клеммные колодки с разветвителями проводов.

Еще одна сложность заключается в том, что некоторые участки светодиодной ленты могут располагаться далеко от источника питания. В этих случаях вы можете столкнуться не только с дополнительными расходами на длинные провода, но и с тем, что они должны быть достаточного сечения. В противном случае вы можете получить падение напряжения в проводах еще до того, как дойдете до участка светодиодной ленты.

Почему термины «последовательный» и «параллельный» технически неверны

Многие клиенты используют слово «последовательный» для описания соединения нескольких секций светодиодных лент встык или последовательного соединения.Некоторые из наших более наблюдательных читателей, однако, могли заметить, что мы взяли слово «серия» в кавычки. Причина в том, что с технической точки зрения термин «серия» неверен применительно к этой конфигурации.

Почему это неправильно и почему это важно? Это связано с тем, как спроектированы светодиодные ленты, и с соответствующими принципами электроники. Светодиодные ленты длинные и идут последовательно (в нетехническом смысле, как «одна за другой»), но на самом деле они состоят из множества параллельных ветвей, состоящих из 3-х светодиодов в каждой для светодиодных лент на 12В. (или по 6 светодиодов в светодиодной ленте 24В).

Другими словами, 3 светодиода соединены последовательно, но группы из 3 светодиодов соединены друг с другом параллельно. Именно это позволяет нам просто разрезать светодиодную ленту с интервалом в 3 светодиода. Если вы разрезаете светодиодную ленту, вы просто уменьшаете количество ветвей, соединенных параллельно. Когда вы подключаете светодиодную ленту в сквозной конфигурации (гирляндной цепи), вы просто добавляете дополнительные параллельные ветви.

Мы считаем, что это важно уточнить, потому что правильное последовательное электрическое соединение изменит требуемое входное напряжение.Однако, когда люди говорят о последовательном подключении светодиодных лент, они почти всегда соединяют секции светодиодных лент встык. При таком подключении входное напряжение светодиодной ленты остается неизменным. Другими словами, вы можете использовать источник питания 12 В для питания 4-футовой секции 12-вольтовых светодиодных лент с другой 3-футовой секцией 12-вольтовых светодиодных лент, соединенных в цепочку.

Другие сообщения



Что такое CRI для светодиодных лент?

Просматривая характеристики светодиодных лент, вы, возможно, натолкнулись на показатель CRI.В отличие от цветовой температуры, CRI связан с цветом… Подробнее


Лампы E26 и E27 — взаимозаменяемы? Не обязательно!

Вам может быть интересно, являются ли Е26 и Е27 одинаковыми или взаимозаменяемыми, и можно ли использовать лампочку Е26 в патроне Е27 или наоборот.До … Подробнее


Насколько сильно нагреваются светодиодные ленты? Это нормально?

Вы можете часто видеть, как светодиодные технологии рекламируются за более низкую теплоотдачу и более высокую эффективность. Итак, вы можете быть удивлены, увидев … Подробнее


Можно ли использовать светодиодную ленту на 12 В при напряжении менее 12 В?

При поиске светодиодных лент вы, скорее всего, наткнетесь на … Подробнее


Назад к блогу Waveform Lighting

Просмотрите нашу коллекцию статей, инструкций и руководств по различным применениям освещения, а также подробные статьи по науке о цвете.


Обзор продуктов освещения Waveform


Светодиодные лампы серии А

Наши лампы A19 и A21 подходят для стандартных светильников и идеально подходят для напольных и настольных светильников.

Светодиодные лампы-канделябры

Наши светодиодные лампы-канделябры обеспечивают мягкий и теплый свет в декоративном стиле, который подходит для светильников E12.

Светодиодные лампы BR30

Лампы

BR30 — это потолочные светильники, которые подходят для жилых и коммерческих светильников с 4-дюймовыми или более широкими отверстиями.

Светодиодные лампы T8

Непосредственно замените 4-футовые люминесцентные лампы нашими светодиодными трубчатыми лампами T8, совместимыми как с балластами, так и без них.

Светильники LED-Ready T8

Трубчатые светодиодные светильники

предварительно смонтированы и совместимы с нашими светодиодными лампами T8.

Светодиодные линейные светильники

Линейные светильники длиной 2 и 4 фута. Подключается к стандартным настенным розеткам и крепится с помощью винтов или магнитов.

Светодиодные светильники для магазинов

Светильники накладные с подвесными цепями.Включается в стандартные настенные розетки.

Светодиодные лампы УФ-А

Мы предлагаем светодиодные лампы с длиной волны 365 нм и 395 нм для флуоресцентных и полимеризационных применений.

Светодиодные УФ-лампы

Мы предлагаем светодиодные лампы UV-C с длиной волны 270 нм для бактерицидного применения.

Светодиодные модули и аксессуары

Светодиодные печатные платы, панели и другие форм-факторы для различных промышленных и научных приложений.

Светодиодные ленты

Яркие светодиодные излучатели, установленные на гибкой печатной плате. Может быть отрезан по длине и установлен в различных местах.

Диммеры для светодиодных лент

Диммеры и контроллеры для регулировки яркости и цвета светодиодной ленты.

Источники питания для светодиодных лент

Блоки питания для преобразования линейного напряжения в низковольтный постоянный ток, необходимые для систем светодиодных лент.

Алюминиевые каналы

Швеллеры из экструдированного алюминия для монтажа светодиодных лент.

Соединители для светодиодных лент

Непаянные соединители, провода и адаптеры для соединения компонентов системы светодиодных лент.

Объяснение серии

и параллельных цепей

Надеемся, что те, кто ищет практическую информацию об электрических схемах и подключении светодиодных компонентов, первыми нашли это руководство.Однако, вероятно, вы уже читали страницу Википедии о последовательных и параллельных схемах здесь, возможно, несколько других результатов поиска Google по этому вопросу, и вам все еще неясно или нужна более конкретная информация, касающаяся светодиодов. В течение многих лет предоставления светодиодного образования, обучения и объяснения концепции электронных схем клиентам мы собрали и подготовили всю важную информацию, необходимую, чтобы помочь вам понять концепцию электрических схем и их связь со светодиодами.

Прежде всего, не позволяйте электрическим цепям и проводке светодиодных компонентов звучать пугающе или запутанно — правильное подключение светодиодов может быть простым и понятным, если вы будете следовать этому сообщению. Давайте начнем с самого простого вопроса…

Какой тип схемы следует использовать?
Одно лучше другого… Последовательно, параллельно или последовательно/параллельно?

Требования к осветительным приборам часто диктуют, какой тип схемы можно использовать, но, если есть выбор, наиболее эффективным способом работы светодиодов высокой мощности является использование последовательной схемы с драйвером светодиода постоянного тока.Запуск последовательной цепи помогает обеспечить одинаковое количество тока для каждого светодиода. Это означает, что каждый светодиод в цепи будет иметь одинаковую яркость и не позволит одному светодиоду потреблять больше тока, чем другому. Когда каждый светодиод получает одинаковый ток, это помогает устранить такие проблемы, как тепловой разгон.

Не волнуйтесь, параллельная схема по-прежнему является приемлемым вариантом и часто используется; позже мы опишем этот тип схемы.

Прежде всего, давайте рассмотрим схему серии :

.

Часто называемый «гирляндным» или «контурным» током в последовательной цепи протекает по одному пути от начала до конца, при этом анод (положительный) второго светодиода подключен к катоду (отрицательному) первого.На изображении справа показан пример: чтобы подключить последовательную цепь, подобную показанной, положительный выход драйвера подключается к положительному выводу первого светодиода, а от этого светодиода выполняется соединение от отрицательного к положительному второму. Светодиод и так далее, до последнего светодиода в цепи. Наконец, последнее соединение светодиода идет от отрицательного контакта светодиода к отрицательному выходу драйвера постоянного тока, создавая непрерывную петлю или гирляндную цепь.

Вот несколько пунктов для справки о последовательной цепи:

  1. Через каждый светодиод протекает одинаковый ток
  2. Общее напряжение цепи равно сумме напряжений на каждом светодиоде
  3. Если один светодиод выйдет из строя, вся схема не будет работать
  4. Цепи серии
  5. проще подключать и устранять неполадки
  6. Изменение напряжения на каждом светодиоде допустимо

Питание последовательной цепи:

Концепция петли уже не проблема, и вы определенно можете понять, как ее подключить, но как насчет питания последовательной цепи.

Во втором пункте выше указано: «Общее напряжение цепи равно сумме напряжений на каждом светодиоде». Это означает, что вы должны обеспечить, как минимум, сумму прямых напряжений каждого светодиода. Давайте посмотрим на это, снова используя приведенную выше схему в качестве примера, и предположим, что светодиод представляет собой Cree XP-L с током 1050 мА и прямым напряжением 2,95 В. Сумма трех из этих прямых напряжений светодиода равна 8,85 В постоянного тока . Таким образом, теоретически минимальное входное напряжение, необходимое для работы этой схемы, составляет 8,85 В.

В начале мы упомянули об использовании драйвера светодиодов постоянного тока, потому что эти модули питания могут изменять свое выходное напряжение в соответствии с последовательной схемой. По мере того как светодиоды нагреваются, их прямое напряжение изменяется, поэтому важно использовать драйвер, который может изменять свое выходное напряжение, но поддерживать одинаковый выходной ток. Для более глубокого понимания драйверов светодиодов загляните сюда. Но в целом важно убедиться, что входное напряжение драйвера может обеспечить выходное напряжение, равное или превышающее 8.85В мы вычислили выше. Некоторым драйверам требуется вводить немного больше, чтобы учесть питание внутренней схемы драйвера (Драйвер BuckBlock требует дополнительных 2 В), в то время как другие имеют функции повышения (FlexBlock), которые позволяют вам вводить меньше.

Надеюсь, вы сможете найти драйвер, который сможет выполнить вашу светодиодную схему с последовательно включенными диодами, однако есть обстоятельства, которые могут сделать это невозможным. Иногда входного напряжения может быть недостаточно для питания нескольких последовательно соединенных светодиодов, или, возможно, слишком много светодиодов для последовательного включения, или вы просто хотите ограничить стоимость драйверов светодиодов.Какой бы ни была причина, вот как понять и настроить параллельную схему светодиодов.

Параллельная цепь:

Если последовательная цепь получает одинаковый ток для каждого светодиода, параллельная цепь получает одинаковое напряжение для каждого светодиода, а общий ток для каждого светодиода равен общему выходному току драйвера, деленному на количество параллельных светодиодов.

Опять же, не волнуйтесь, здесь мы увидим, как подключить параллельную схему светодиодов, и это должно помочь связать идеи воедино.

В параллельной цепи все положительные соединения соединяются вместе и возвращаются к положительному выходу драйвера светодиода, а все отрицательные соединения соединяются вместе и возвращаются к отрицательному выходу драйвера.Давайте посмотрим на это на изображении справа.

Используя пример, показанный с выходным драйвером 1000 мА, каждый светодиод получит 333 мА; общий выход драйвера (1000 мА), разделенный на количество параллельных цепочек (3).

Вот несколько пунктов для справки о параллельной схеме:

  1. Напряжение на каждом светодиоде одинаковое
  2. Общий ток представляет собой сумму токов через каждый светодиод
  3. Общий выходной ток распределяется по каждой параллельной цепи
  4. В каждой параллельной цепочке требуются точные значения напряжения, чтобы избежать перегрузки по току

Теперь давайте повеселимся, объединим их вместе и наметим серию/параллельную цепь :

Как следует из названия, последовательно-параллельная цепь объединяет элементы каждой цепи.Начнем с последовательной части схемы. Допустим, мы хотим запустить в общей сложности 9 светодиодов Cree XP-L с током 700 мА каждый и напряжением 12 В постоянного тока ; прямое напряжение каждого светодиода при 700 мА составляет 2,98 В постоянного тока . Правило номер 2 из пунктов списка последовательной схемы доказывает, что 12 В постоянного тока недостаточно для работы всех 9 светодиодов последовательно (9 x 2,98 = 26,82 В постоянного тока ). Тем не менее, 12 В постоянного тока достаточно для запуска трех последовательных (3 x 2,98 = 8,94 В постоянного тока ). И из правила параллельной схемы номер 3 мы знаем, что общий выходной ток делится на количество параллельных цепочек.Таким образом, если бы мы использовали BuckBlock на 2100 мА и имели три параллельные цепочки из 3 светодиодов последовательно, то 2100 мА были бы разделены на три, и каждая серия получила бы 700 мА. Пример изображения показывает эту настройку.

Если вы пытаетесь собрать светодиодную матрицу, этот инструмент планирования светодиодных цепей поможет вам решить, какую схему использовать. На самом деле это дает вам несколько различных вариантов различных последовательных и последовательно-параллельных цепей, которые будут работать. Все, что вам нужно знать, это ваше входное напряжение, прямое напряжение светодиода и количество светодиодов, которые вы хотите использовать.

Падение нескольких светодиодных цепочек:

При работе с параллельными и последовательными/параллельными цепями следует помнить, что если перегорает цепочка или светодиод, то светодиод/цепочка будет отключена от цепи, поэтому дополнительная токовая нагрузка, которая шла на этот светодиод, уменьшится. раздать остальным. Это не является серьезной проблемой для массивов большего размера, поскольку ток будет рассеиваться в меньших количествах, но как насчет схемы, состоящей всего из 2 светодиодов/цепочек? Тогда ток будет удвоен для оставшегося светодиода/цепочки, что может быть более высокой нагрузкой, чем может выдержать светодиод, что приведет к перегоранию и разрушению вашего светодиода! Убедитесь, что вы всегда помните об этом, и старайтесь иметь настройку, которая не испортит все ваши светодиоды, если один из них перегорит.

Еще одна потенциальная проблема заключается в том, что даже если светодиоды изготовлены из одной производственной партии (одного и того же биннинга), прямое напряжение все равно может иметь допуск 20%. Различное напряжение в отдельных цепочках приводит к тому, что ток не делится поровну. Когда одна цепочка потребляет больше тока, чем другая, перегруженные светодиоды будут нагреваться, а их прямое напряжение изменится больше, что приведет к более неравному распределению тока; это называется тепловым разгоном. Мы видели, как многие схемы, настроенные таким образом, работают хорошо, но требуется осторожность.Для получения дополнительной информации об этой концепции и способах ее избежать (текущее зеркало) есть отличная статья здесь, на сайте LEDmagazine.com.

Крепление

Крепление

Следующие функции позволяют математически добавлять (встраивать) или удалять (извлечение) цепей в или из ваших измерений. Математические модели применяются к определенным портам для всех измерений на канале.

Примечания

См. также

Заказ операций с приспособлениями

Нажмите, чтобы узнать больше о каждой операции.

Первый, следующие несимметричные функции измерения обрабатываются в следующем порядке:

  1. Расширения портов

  2. 2 порта Деэмбеддинг

  3. Удаление контура заземления / встраивание

  4. Встроенная схема согласования портов

  5. Порт Z (импеданс) Преобразование

  6. 4-портовая сеть (односторонняя) Встроить/извлечь

Примечание: операции по внедрению контура заземления и удалению контура заземления будут всегда встречается как 3 rd шаг.Его нельзя сдвинуть. По умолчанию это после 2-Port Операция деэмбеддинга.

 

Затем, сбалансированные функции измерения обрабатываются в таком порядке:

  1. Сбалансированное преобразование

  2. Дифференциал/общий Преобразование порта режима Z

  3. Соответствие дифференциального порта

Примечания

  • Крепежные операции применяются к измерению Результаты.

  • Порядок операций 1 до 5 можно изменить с помощью команды SCPI: CALC:FSIM:SEND:OORD. Узнайте, как отправить эту команду из GPIB Консоль командного процессора.

  • Порядок выполнения операций 6 через 9 НЕЛЬЗЯ изменить.

  • В данных цепочки обработки, функции Fixture Simulator выполняются в одновременно с Условиями применения ошибок блокировать.

  • Когда крепление включено, все включенное крепление функции применяются, когда snp файлы сохраняются.

Как выбрать симулятор крепления

О фиксации ВКЛ/ВЫКЛ

ОБА из следующих должно произойти, чтобы включить выбор крепления.

ЛИБО ОДИН превратит выбор светильника ВЫКЛЮЧЕННЫЙ.

  1. Контрольное крепление ВКЛ/ВЫКЛ
    На расширения портов НЕ влияет включение/выключение фиксации.

  2. Проверка включения в диалоговом окне выбора отдельных креплений.

Использование передней панели
аппаратная клавиша [программная клавиша] кнопки

Использование меню

  1. Пресс-кал

  2. затем [Подробнее]

  3. затем [Приборы]

  1. Щелчок Cal

  2. затем Подробнее

  3. затем Светильники

 

Порт Справка диалогового окна сопоставления

Примечание: Эта функция доступна для следующих классов измерений: БЦА, GCX, Пронесло ИМД, свип IMDx, Шум рисунок, NFX, Diff IQ, анализатор спектра и стандартные (S-параметры) каналы.

Эта функция указывает схему для встраивания (добавления) в измерение Результаты. См. Порядок крепления Операции.

Включить сопоставление портов. Установите этот флажок, чтобы применить настройки к результаты измерений. Также необходимо включить Fixturing Вкл выкл.

Порт — выберите порт в что применить моделирование.

Модель схемы

для согласования — Выберите один из следующих вариантов, который лучше всего имитирует ваш прибор на выбранном порту PNA:

Серия L — Шунт C

ПНА

ТУ

Шунт C — Серия L

ПНА

 

ТУ

Шунт L — серия C

ПНА

 

ТУ

Серия C — Шунт L

ПНА

 

ТУ

Шунт L — Шунт C

ПНА

 

ТУ

Пользователь Определено (файл S2P)

Загрузить указанный файл с пользовательским файлом S2P кнопка.

Нет

Использование нет схемной модели.

Пользовательский файл S2P  Нажмите указать файл S2P модели схемы для встраивания в выбранный порт. Если нормализованное значение импеданса в вызванном пользователе .S2P файл отличается от настройки опорного импеданса порта PNA, используется настройка PNA.

Значения цепи

Емкость (C), индуктивность (L), сопротивление (R), проводимость (G) значения для конкретных компонентов типа схемы, которая моделирует вашу приспособление.

Сброс Восстанавливает значения по умолчанию.

 

2 Диалоговое окно удаления портов коробка помощь

Примечание: Эта функция доступна для следующих классов измерений: БЦА, GCX, Пронесло ИМД, свип IMDx, Шум рисунок, NFX, Diff IQ, анализатор спектра, и стандартные (S-параметры) каналы.

De-Embed, когда вы выполнили калибровку, а затем добавили приспособление (адаптер, аттенюатор, более длинный кабель и т. д.), соединяется между эталонной плоскостью Cal и вашим тестируемым устройством. Этот функция удаляет эффекты компонента или испытательного приспособления по результатам измерений.

Примечание: деэмбеддинг компонент с потерями более 20 дБ становится нецелесообразным, потому что невозможности точно измерить соответствие ИУ через такое устройство.

Операция извлечения вызывает файл .s2p (Touchstone формат), который включает в себя электрические характеристики 2-портового приспособление или устройство. Файл может быть в любом стандартном формате (реально-мнимый, магнитуда-угол, дБ-угол).

Включить извлечение  Проверить чтобы применить настройки к результатам измерения. Также необходимо включить Крепление Вкл выкл.

Включить экстраполяцию. Установите этот флажок, чтобы применить простую экстраполяцию. когда файл S2P имеет более узкий частотный диапазон, чем канал.Значения для первой и последней точек данных расширены в любом направлении, чтобы покрыть частотный диапазон измерения. Диапазоны частот как канала, так и файла S2P отображается в нижней части диалогового окна.

Когда необходима экстраполяция и включено, отображается сообщение, показывающее диапазон частот быть экстраполированным. Когда экстраполяция необходима и отключена, появится сообщение с предложением включить экстраполяцию.

Этот параметр также вызывает 4-портовый Экстраполяция должна быть включена и отключена.

Порт    Порт PNA, к которому применяется отозванный файл извлечения.

В раскрывающемся меню выберите Пользователь. Определено (файл S2P).

Обратные порты адаптера Установите этот флажок, чтобы настроить приспособление/адаптер с Порт 2, подключенный к анализатору серии PNA, и порт 1, который необходимо подключить к ДУТ. Изображение в диалоговом окне отражает это изменение.

Пользовательский файл S2P Нажмите чтобы указать существующий файл .S2P. Если нормированный импеданс значение в отозванном файле .S2P пользователя отличается от порта эталонного импеданса PNA, используется настройка PNA.

 

Порт Справка диалогового окна преобразования Z (импеданс)

Примечание: Эта функция доступна для следующих классов измерений: БЦА, GCX, Пронесло ИМД, свип IMDx, Шум рисунок, NFX, Diff IQ, анализатор спектра и стандартные (S-параметры) каналы.

Эта функция корректирует измерение и отображает результаты как если бы измерение было выполнено в указанном импедансе стоимость. Тем не менее, терминация физического порта по-прежнему приблизительно 50 Ом.

Указанный импеданс значение применяется ко всем измерениям ТОЛЬКО на активном канал.

См. Порядок работы с приспособлениями.

Включить Преобразование порта Z. Установите этот флажок, чтобы применить настройки к результаты измерений.Также необходимо включить Fixturing Вкл выкл.

Р Реал. часть значения импеданса.

jX Мнимая часть значения импеданса.

Закрыть Применяется записи и закрывает диалоговое окно

Примечание. Порт Z (импеданс) преобразование использует значения в следующем порядке приоритета:

  1. Сбалансированный (дифференциал или общий режим) — если включено, эти значения используются всегда.

  2. Одноместный Импеданс порта — если включено, используется это значение. если балансировка не включена.

  3. Система Импеданс — если ни балансный, ни однопортовый включено, используется это значение.

 

 

4 порта для встраивания/извлечения диалоговое окно справки

Эта функция определяет несимметричный 4-портовый канал (*.S4P файл) для встраивания (добавления) или извлечения (удаления) из измерения Результаты. Вычисление происходит ДО Сбалансированного преобразования. См. Порядок операций с фиксаторами.

Для каждого порта в файл *.S4P. Это значение импеданса должно соответствовать импедансу предыдущей настройки порта Z или импеданса порта PNA.

PNA будет интерполировать, если число точек данных, которые считываются, отличается от текущего PNA параметр.

Включить 4 порта Embed/De-embed  Отметьте, чтобы применить настройки к результатам измерений. Также необходимо включить/выключить Fixturing.

Включить Экстраполяция. Установите этот флажок, чтобы применить простую экстраполяцию. когда файл S4P имеет более узкий частотный диапазон, чем канал. Значения для первой и последней точек данных расширены в любом направлении, чтобы покрыть частотный диапазон измерения. Диапазоны частот как канала, так и файла S4P отображается в нижней части диалогового окна.

Когда экстраполяция необходима и включена, отображается сообщение показывает диапазон частот, который необходимо экстраполировать. При экстраполяции необходимо и отключено, отображается сообщение с предложением включить экстраполяцию.

Этот параметр также вызывает 2-портовый Экстраполяция должна быть включена и отключена.

Топология

Выберите топологию тестируемого устройства. Обратитесь к изображениям в диалоговом окне 4-портового встраивания/извлечения.

  • A — 2 порта PNA/DUT

  • B — 3 порта PNA/DUT

  • C — 4 порта PNA/DUT

Примечание: Не все возможные топологии ИУ рассматриваются с помощью этого чат.

Чтобы внедрить или извлечь другие топологии, используйте это диалоговое окно. в сочетании с 2-портовым диалог встраивания/удаления. Например, если у вас есть 3-портовое тестируемое устройство Bal-SE и сети для деэмбедирования как показано здесь:

  1. В этом диалоговом окне укажите топологию Б.

  2. Удаление 4-портовой сети Network1 из Сбалансированный вход.

  3. Используйте 2-портовый диалоговое окно для извлечения 2-портовой сети из несимметричного выход.

 

нет данных Порты — выберите порт PNA, подключенный к каждой цепи. порт.

Сеть Порты Выберите сетевые порты, которые представляют конфигурацию файла S4P.По умолчанию порты 1 и 2 подключены к PNA, а порты 3 и 4 подключены к тестируемому устройству.

Нет, внедрить, извлечь Для Network1 и Network2 выберите:

Просмотр  Для обоих Network1 и Network2, найдите файл .*S4P для встраивания. или де-встроить.

OK  Применяет изменения и закрывает диалоговое окно.

Отменить НЕТ применить изменения и закрыть диалоговое окно.

 

Дифференциал Справка диалогового окна преобразования импеданса

Эта функция устанавливает дифференциальный значение импеданса для каждого симметричного порта.

Значение по умолчанию для R: представляет собой СУММУ значений импеданса для обоих портов, которые составляют логический порт. Если преобразование порта Z не включен, то Система Значения Z0 для обоих портов суммируются.

См. Порядок работы с приспособлениями.

Включить дифференциальное преобразование Z Установите этот флажок, чтобы применить настройки к результатам измерения. Также необходимо включить Fixturing Вкл выкл.

Логический порт  Выбрать логический (сбалансированный) порт для получения значения импеданса.Чтобы увидеть номера логических портов, см. измерение топология.

R  Действительная часть значение импеданса.

jX Мнимая часть значения импеданса.

Закрыть Закрывает чат.

См. примечание об импедансе порта. приоритет.

 

Общий Справка диалогового окна Mode Impedance Conversion

Эта функция устанавливает общий режим Значение импеданса для каждого сбалансированного порта.

Значение по умолчанию для R: рассчитывается следующим образом.

(Z1 * Z2) / (Z1 + Z2)

Где порты 1 и 2 составляют логический порт:

Z1 = значения импеданса порта для порта 1

Z2 = значения импеданса порта для порта 2

Если порт Преобразование Z не включено, тогда система В расчетах используются значения Z0 для портов 1 и 2.

См. Порядок работы с приспособлениями.

Включить Z-преобразование синфазного режима Установите этот флажок, чтобы применить настройки к результатам измерения. Также необходимо включить Fixturing Вкл выкл.

Логический порт  Выбрать логический (сбалансированный) порт для получения значения импеданса. Чтобы увидеть номера логических портов, см. измерение топология.

R  Действительная часть значение импеданса.

jX Мнимая часть значения импеданса.

Закрыть Закрывает чат.

См. примечание об импедансе порта. приоритет.

 

Дифференциал Справка диалогового окна «Сопоставление портов»

Эта функция позволяет встраивать дифференциальной согласующей схемы на балансном порту.

См. Порядок работы с приспособлениями.

Включить дифференциальное сопоставление портов Отметьте, чтобы встроить выбранную согласующую цепь в результаты измерений.Также необходимо включить Fixturing Вкл выкл.

Логический порт Выберите Логический Порт DUT для приема выбранной схемы согласования. Чтобы увидеть номера логических портов, см. измерение топология.

Выберите цепь  Выбрать согласующая цепь. Выберите из:

Значения цепи

 Выбрать от:

Примечание: Для файла *.S2P:
Предполагается, что порт 1 схемы подключен к PNA
. Предполагается, что порт 2 схемы подключен к тестируемому устройству.

Закрыть Закрывает чат.

 

 

Мощность Справка по диалогу компенсации

Примечание: Эта функция доступна во ВСЕХ классах измерения.

Эта функция регулирует мощность источника в указанном порту, чтобы компенсировать общую сумму прибыли или убытка в результате конкретных операций по креплению.Используйте эту функцию для установки уровня мощности на входе ИУ.

Сила Компенсация регулирует мощность источника для усиления/потери через 2-портовые деэмбедированные компоненты крепления.

Например:

  • Для вашего тестируемого устройства требуется приспособление на входном порту, которое подключено к порту PNA 1.

  • Описание светильника (например, файл S2P на 2-портовом функция деэмбедирования) указывает, что прибор имеет примерно 2 дБ потерь по всему диапазону частот.

  • Вы устанавливаете источник питания до 0 дБм. Но вы хотите, чтобы 0 дБм на входе DUT (приспособление выход).

  • Проверка компенсации мощности на порту 1 и включите Fixturing.

  • Компенсация мощности приводит к увеличению мощности источника примерно в 2 раза. дБ, так что мощность на выходной плоскости прибора останется при 0 дБм.

Компенсация мощности влияет на все измерения в канале.

Включить фиксацию использовать компенсацию мощности.

Примечание: Будьте осторожны при применении компенсации мощности. Всегда проверяйте ваша установка без DUT в месте. Если вы используете файлы S2P, Отзывать ваш файл S2P в PNA, чтобы вы могли убедиться, что ваше устройство Файл S2P описывает то, что вы предполагали. это слишком легко сместить данные в файлах S2P, если они созданы рука.

Земля Деэмбеддинг/встраивание петли

Удаление контура заземления устраняет эффект неидеального заземления между ИУ заземление и опорное заземление анализатора.Как правило, неидеальной составляющей является паразитная индуктивность заземляющих контактов.

Земля заделка петель добавляет эффект неидеальности компонента на земле контакты.

Удаление/встраивание контура заземления может быть задан типом модели схемы или пробным файлом.

Земля деэмбедирование/встраивание циклов доступно только из SCPI удаленный интерфейс.

Пример симулятора приспособления

В следующем примере показаны тестируемое устройство и согласующая цепь, с которой DUT будет использоваться по назначению.Когда тестируется DUT в условиях крупносерийного производства несколько тестовых приспособлений часто требуется. Самый точный способ проверить тестируемое устройство и обеспечить измерение согласованность между различными тестовыми приспособлениями заключается в использовании простого, воспроизводимого, тестовое приспособление без фактических совпадающих элементов.

Чтобы получить желаемые рабочие характеристики, паразитные эффекты прибора должны быть сначала удалены (де-встроены) из измеренных данных. Тогда идеальный «виртуальная» согласующая цепь должна быть смоделирована и добавлена ​​математически. (встроенный) в скорректированные измеренные данные.Результат — точный отображение тестируемого устройства, как если бы оно было действительно протестировано с физическим согласованием схема, но без неопределенностей использования реальных компонентов.

Тест Устройство и схема, в которой оно будет использоваться.

 

Цепь Моделирование

Эта диаграмма НЕ относится к порядку выполнения операций.

См. Порядок операций с приспособлениями.

  1. Создать сбалансированное измерение с использованием несимметричного и сбалансированного (SE-Bal) топология. Включите все соответствующие параметры измерения (IFBW, количество точек, и так далее). После того, как измерение создано и откалибровано, параметр измерения может быть легко изменен. Например, Sdd22 для Сдс21.

  2. Калибровка измерения в точке, где простой испытательное приспособление подключено к PNA.Используйте точные стандарты калибровки и определения.

  3. Убрать эффекты трех некалиброванных передач линии простой тестовой оснастки. Это можно сделать в нескольких различных методы. Проще всего использовать ручной или автоматический порт. Удлинители для перемещения эталонной плоскости калибровки к тестируемому устройству. Это устраняет электрическую длину и потери передачи прибора. линии, но не учитывает несоответствие приборов.Другой метод для извлечения ранее созданных файлов *.S2p 3-х линий передачи. Файлы могут быть созданы с помощью внешнего программного обеспечения для моделирования ADS. Другая альтернативой является создание файлов *.S2P путем независимого измерения все 3 порта тестового приспособления и сохранение результаты каждого в файл S2P.

  4. С испытательным приспособлением, подключенным к PNA и ИУ вставлены, результаты измерения теперь выглядят так, как если бы было выполнено на соединениях с ИУ, и устройство было измерено в тестовой среде с сопротивлением 50 Ом.Следующие шаги будут привести к тому, что результаты будут отражать производительность устройства, как если бы устройство встроено в схему, в которой оно будет использоваться.

  5. Порт 1 устройства является односторонним и видит импеданс источника такой же, как импеданс системы PNA, поэтому без изменений требуется для. Однако, если бы Rs было значением, отличным от 50 Ом, Port 1 Преобразование импеданса будет использоваться для имитации различных импеданс.

  6. Соответствие портов используется для имитации индуктивности L1. Выберите любую из цепей Shunt L вставлять (добавлять) в результаты измерений. Введите значение L и R. Значения C и G можно ввести как 0 (ноль).

  7. Соответствие портов используется для моделирования емкости C1 и C2. Как для порта 2, так и для порта 3, выберите любой из серии C схемы для встраивания (добавления) в результаты измерений. Введите значение из С и Г.Значения L и R можно ввести как 0 (ноль).

  8. Сбалансированный Преобразование математически имитирует измерение в сбалансированном режим.

  9. Дифференциальный порт Согласование используется для имитации индуктивности L2. Выберите Шунт L- Шунт C и введите значение индуктивности/сопротивления. Значения C и G можно ввести как 0 (ноль).

  10. Наконец, дифференциал Преобразование Z используется для имитации завершения цепи 200 Ом.Если вы выполняете измерения в синфазном режиме, укажите Common Mode (Общий режим). Преобразование режима Z.


 

2 x 4 LED Troffer & Firetures

9054

9054 10V 0-10V Dimming до 5%

CMA Cree Smartca

130 LPW

90L 4000L

35K 3500K

40K 4000k

50k 5000k

EB14 Аварийный резервного копирования — 1400 люменов

ZR-МТ 2 × 4

100 LPW

40L 4000L

50L 5000L

30K 3000K

35K 3500K

40K 4000K

50K 5000K

10 В 0-10 В Диммирование до 1 %

SC1 Cree SmartCast ® Технология 90 до 0 1 %

Blank 120-277V

900 Lumens

140 LPW

30L 3000L

40L 4000L

50L 5000L

60L 6000L

70L 7000L

80L 8000L

100L 10000L

830K 80 + CRI 3000K

835k 80 + CRI 3500K

840K 80 + CRI 4000K

5000K 80 + CRI 5000K «

10V5 0-10V Dimming до 1%

SC1 CREE STRAMET ® Технология до 1 %

VDO Lutron Vive Daylight/Occ Sensor

VRF Lutron Vive Radio Only

LDE1 Lutron EcoSystem 1% Di Mming

LDE5 Lutron ECOSYSTEM 5% DIMMING

UNV 120-277V

340138 120-347V

EB аварийный резервную копию

ZR-RK 2 × 4

130 LPW

30L 3000L

40L 4000L

50L 5000L

60L 6000L

80L 8000L

830 80 + CRI, 3000K

835 80 + CRI, 3500

840

80137 840

, 4000

850 80 + CRI, 5000

3500

3500

84038 80 + CRI

EB Резервное копирование — обеспечивает 90 минут работы в аварийном режиме

6PW5W Power Whip 6 футов 5 проводов

10PW5W Power Whip 10 футов 5 проводов

GTD Генератор T Ransfer Device

ZR-FD 2 × 2

130 LPW

35K 3500k

40K 4000K

10V 0-10V DIMMING до 5%

CMA CREE SMAMET ® Technology

EB14 аварийный резервного копирования — 1400 люменов

ZR-MT 2 × 2

100 LPW

32L 3200L

30K 3000K

35K 3500K

40K 4000K

50K 5000K

10V 0-10В Затемняющий до 1 %

SC1 Cree SmartCast ® Технология до 1 %

Пусто 120–277 В

34 34 0003

EB14 аварийный резервного копирования — 1400 люмен

ZR-C 2 × 2

140 LPW

20L 2000L

30L 3000L

40L 4000L

50L 5000L

5000L

830K 80 + CRI 3000K

835K 80 + CRI 3500K

840K 80 + CRI 4000K

4000K

+ CRI 5000K «

10V 0-10V dimming до 1%

SC1 CREE Smartcast ® Технология до 1%

VDO Lutron Vive Daylight / Score

VRF Lutron Vive Radio только

LDE1 Lutron Ecosystem 1% DIMMING

LDE5 LUTRON ECOSYSTEM 5% DIMMING

UNV 120-277V

340138 120-347V

EB 901 38 аварийной резервной копии

ZR-FD 1 × 4

130 LPW

35K 3500K

40K 4000k

10V 0- 10V DIMMING до 5%

CMA CREE SMARTCAST ® Technology

120-277V

EB14 аварийный резервного копирования — 1400 люменов

ZR-MT 1 × 4

120 LPW

40L 4000L

50L 5000L

30K 3000K

35K 3500K

40K 4000K

50K 5000K

10V 0-10 В Диммирование до 1 %

SC1 Cree SmartCast ® Технология до 1 %

Пусто 120 -277V

34

34 347V

EB14 Аварийный резервного копирования — 1400 люмен

140 LPW

30L 3000L

40L 4000L

50L

50L 5000L

60L 6000л

830K 80 + CRI 3000K

835K 80 + CRI 3500K

840K 80 + CRI 4000K

850K 80 + CRI 5000K «

10V 0-10V Dimming до 1%

SC1

SC1 Cree Smartca ® Технология до 1%

VDO Lutron Vive Daylight / Score

VRF Lutron Vive Radio только

LDE1 Lutron Ecosystem 1% DIMMING

LDE5 Lutron Ecosystem 5% DIMMING

UNV 120-277V

34 120-347V

EB Аварийное резервное копирование

Как подключить DMX для сценического освещения

Для новичков в сценическом освещении одна из идей, которая может сбить с толку, — это как подключить все ваши приборы.Еще в «старые времена» вы просто подключали контрольный кабель к своим диммерам и выводили питание на обычные светильники. В целом это было довольно просто, без «настроек» или конфигурации ваших источников света.

Однако сегодня все становится немного сложнее! Большинству, если не всем приборам в современной осветительной установке требуется сигнал DMX, поэтому при попытке управлять всем этим может возникнуть небольшая путаница.

Посмотрите видео ниже, чтобы узнать об основах, а затем мы поговорим немного подробнее:

Основы

При работе с консолью освещения, будь то компьютерная или аппаратная, консоль будет оснащена выходом DMX.Выход DMX посылает сигнал для связи с осветительными приборами.

Цепочка ромашек

Гирляндная цепочка — это простой метод подключения, при котором каждый прибор подключается по петле из предыдущего прибора, чтобы создать линию приборов, соединенных обратно с консолью.

Пример: Допустим, у вас есть 4 светодиодных светильника. Большинство приборов имеют вход DMX и выход DMX. С выхода DMX консоли вы подключаетесь к входу DMX прибора или устройства и подключаетесь через выход DMX к следующему прибору или устройству.

Итак, что произойдет, когда вы доберетесь до последнего прибора? У вас будет выход DMX, который не используется.

«Спецификация» требует, чтобы вы использовали терминатор DMX, чтобы предотвратить отражение данных. Но в большинстве ситуаций это не понадобится.

Терминатор DMX: Вот один, если он вам нужен!

32 Fixture Rule — DMX позволяет подключать только до 32 приборов в одну гирляндную цепочку для усиления сигнала. Иногда, в зависимости от светильников и длины кабеля, это число меньше (или больше).

На самом деле большинство людей рекомендуют подключать только 16–20 приборов или устройств в гирляндной цепи. Это связано с тем, что некоторые приборы могут быть «тяжелее» или «легче» в линии DMX.

Устройства

также будут включать в себя Dimmer Pack. Блок диммера может подключать от 4 до 8 источников света, но при этом считается только одним устройством в гирляндной цепи.

Разделение DMX

Чтобы обойти правило 32 устройств, вы можете разделить сигнал DMX и создать несколько последовательных цепочек.

В простейшей форме сплиттер DMX принимает выходной сигнал DMX и просто копирует его несколько раз.Разветвитель DMX также может быть известен как «оптический разветвитель» или даже оптически изолированный разветвитель.

Разделение вашего DMX также может помочь вам сделать ваши кабельные трассы более чистыми и изолировать различные трассы приборов. Проверьте мой любимый сплиттер DMX здесь.

Разветвитель DMX также может защитить вашу консоль в случае, если вы подключите к ней неисправный свет! Недавно я разговаривал с другим дизайнером по свету, и он поделился со мной историей о клиенте, который поджарил световую консоль за 15 000 долларов, потому что они подключили ее к дешевому светодиодному светильнику.

Светодиодный прибор не был известной торговой маркой, и что-то пошло не так внутри, отправив напряжение по линии DMX и уничтожив микросхему DMX в консоли. Не круто, и недорогой DMX-сплиттер выдержал бы жару вместо дорогой консоли, если бы они ее использовали!

Некоторые сплиттеры имеют 3 или 5 контактов для каждого выхода. Когда разветвитель имеет 3- и 5-контактный на одном выходе , вам нужно будет выбрать между 3-контактным или 5-контактным, вы не можете использовать оба!

Если штекеры разветвителя на выходе помечены отдельно, то при необходимости можно использовать каждый штекер.

Если прибор имеет 3-контактные и 5-контактные входы и выходы…

Если у вас есть устройство с 3-контактным и 5-контактным входом/выходом, принцип работы тот же, что и со сплиттером.

Вы можете иметь 3-контактный выход и 5-контактный вход или наоборот, но не можете иметь 2 входа и/или 2 выхода.

Вы не можете использовать 3- и 5-контактные разъемы DMX на приборах в качестве разделения!

Несколько вселенных Консоль с несколькими выходами

DMX-светильников в наши дни может занимать больше каналов, чем когда-либо прежде, и когда вам нужно более 512 каналов, вам нужно будет запустить новую вселенную DMX.

Вселенная DMX — это просто новый свежий набор из 512 каналов DMX для управления освещением.

Если у вас есть несколько вселенных, ваша консоль отметит эти вселенные как DMX 1 и DMX 2 (и 3, и 4…), и адрес также будет отображаться в разделе патчей. Некоторые консоли будут использовать буквы вместо номеров юниверсов (например, A, B, C…)

Вы можете просто соединить вселенные по отдельности, это действительно так просто!

Только не забудьте оставить светильники и устройства только в желаемой вселенной.Вы не можете смешивать их, так как обычные огни DMX не могут понять разницу между вселенными и, следовательно, будут делать неправильные вещи!

Если ваша консоль имеет несколько юниверсов, вы можете «зонировать» свою осветительную установку по различным юниверсам, чтобы оставаться организованным и упростить проводку.

Кроме того, сплиттеры DMX не могут охватывать несколько вселенных, хотя некоторые из них позволяют вам вводить 2 вселенных и выбирать, какие порты вы хотите назначить для каждого выхода.

Будущее

Как я упоминал в видео выше, DMX постоянно меняется, и мы всегда видим все больше и больше новых источников света, у которых еще больше каналов, чем раньше.

Некоторые светильники сегодня могут напрямую подключаться к сети DMX и даже не использовать кабели DMX! По мере того, как мы продвигаемся дальше в будущее, это, вероятно, станет большей частью нашего освещения!

Тем не менее, даже с обычными приборами DMX все реже и реже требуются сплиттеры DMX — по мере того, как мы продвигаемся вперед, а цены продолжают падать, мы увидим, что все больше шоу переходят на использование узлов Art-Net и sACN вместо этих источников света.

Добавить комментарий

Ваш адрес email не будет опубликован.