Меню Закрыть

Сечения медных проводов: Сечение медного кабеля | Полезные статьи

Содержание

Стандартные сечения кабеля и провода. Блог компании РусЭлектроКабель

Главные параметры кабеля, которые нужно учитывать при разработке проектов электроснабжения, материал и сечение жил. Производители выпускают широкий ассортимент продукции разных характеристик. Рассказываем о существующих видах кабеля и местах их применения. 

Медный и алюминиевый кабели имеют одинаковые стандартные сечения: 0,5; 0,75 1; 1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 625; 800; 1000; 1200; 1600 кв. мм. Однако, минимальная площадь сечения жилы алюминиевого кабеля 2,5 кв.мм и 0,5 кв.мм медного кабеля. Максимальное значение для обоих проводников – 1600 кв.мм. Алюминий – материал относительно низкой прочности, кабель толщиной менее 2,5 кв. мм легко ломается после двух, трех изгибов, а также «плывет» в местах объединения.


      

Выбор кабеля для подключения бытовых приборов

Для подключения бытовых устройств освещения подходит медный провод размером от 1 до 1,5 кв. мм. Его можно заменить алюминиевой продукцией минимальных параметров. Для установки розеток необходимо использовать изделия площадью не менее 2,5 кв. мм независимо от материала.

Если требуется подключить мощные устройства, создающие относительно большую нагрузку на сеть, лучше применять медный кабель размером от 4 до 10 кв. мм в зависимости от характеристик прибора. Чтобы снизить нагрузку с общей электропроводки, для питания мощной бытовой техники прокладывают выделенную линию. Такие кабели также используют для подвода напряжения к распредкоробкам, питающим несколько бытовых розеток.

Проводники площадью более 10 кв. мм применяют только для подвода напряжения к электрическим щиткам. Неэкранированный кабель сечением от 0,5 до 2,5 кв. мм применяют для подвода напряжения к бытовой технике.

Выбор сечения кабеля для электроснабжения производственных помещений

Для питания автоматических устройств, схем управления, аппаратов защиты, которые используются для безопасной и эффективной эксплуатации промышленного оборудования применяют провода площадью от 1 до 6 кв. мм.

Кабель силовой до 120 кв. мм востребован для электроснабжения производственного оборудования высокой мощности. Провода площадью 2,5 – 50 кв. мм применяют в схемах напряжением до 1 тыс. Вольт. Для прокладки высоковольтных сетей требуется кабель размером от 35 до 1600 кв. мм.


80 фото правильного выбора и применения

При проведении электромонтажных работ в квартире или загородном доме следует уделить большое внимание используемым материалам. В первую очередь необходимо правильно подобрать электрические провода. Выбираются они на основе нескольких факторов. Наиболее важным из них является их площадь сечения.

В этом обзоре подробно пошагово описано как выбрать сечение провода в зависимости от тока и мощности нагрузки в электросети. Грамотный подбор кабеля определяет надежность и долговечность работы электрической сети.

Выбор материала для электропроводки

Электрические провода для домашней проводки могут выпускаться из двух металлов: алюминия и меди. Эти металлы обладают своими достоинствами и недостатками.

Давайте рассмотрим свойства алюминия. Этот металл более легок, обладает меньшей массой, проводник дешевле изготовить из алюминия чем из меди. На этом его достоинства заканчиваются.

Алюминий обладает рядом недостатков. Он обладает практически в полтора раза большим удельным сопротивлением по сравнению с медью, поэтому алюминиевый провод требуется большего сечения по сравнению с медным проводом. Этот металл легко окисляется и поэтому он покрывается тонкой оксидной пленкой, которая не проводит ток. Из-за этой пленки может происходить опасный нагрев кабеля в месте его подсоединения.

Проводник из этого металла ломок и после нескольких сгибаний может сломаться. Это затрудняет ремонт электрической проводки.

Алюминий массово применялся много десятилетий назад, во времена советского союза. Его можно и сейчас встретить в старых квартирах. Действующие правила устройства электроустановок не рекомендуют использовать алюминий при обустройстве проводки и кабельных линий площадью сечения менее 16 квадратных миллиметров. То есть желательно всю домашнюю проводку делать из медных проводов.

Стоит отметить, что медь и алюминий не совместимы межу собой. Их нельзя вместе скручивать. Соединение этих двух металлов возможно только через железо. Это следует учесть при монтаже.

Выбор сечения проводника

Диаметр проводника определяется током и нагрузкой, которая будет с его помощью подключаться длительное время. Максимальный ток, поступающий в квартиру или частный дом определяет организация, оказывающая услуги по энергоснабжению.

Наиболее распространенная величина допустимого тока для квартир составляет 25 ампер. Соответственно домашняя проводка должна выдерживать такой ток. При этом для некоторых линий в квартире он может быть меньше. Например, для линий освещения можно выбрать более тонкий проводник.

Для организации силового питания используют более толстые проводники. Например, для подключения кондиционера или электроплиты проводят выделенную электролинию напрямую от электросчетчика. Потребляемый ток и мощность определяется паспортными данными оборудования.

При этом стоит учесть, что в обыкновенные бытовые розетки можно подключать нагрузку с силой тока не более 10 ампер. Для больших токов используют специальные розетки.

На вопрос о том, как рассчитать сечение провода есть очень простой ответ: 1 квадратный миллиметр медного провода рассчитан на 10 ампер, а аналогичное сечение алюминиевого проводника выдерживает ток 8 ампер. В характеристиках проводов указывается именно площадь его сечения, а не его диаметр.

Проверка площади сечения провода

Определившись с типом и диаметром проводника, при его покупке стоит проверить его характеристики. Это необходимо, так как производители уменьшают в целях экономии сечение медного провода и его изоляцию. При этом заявляется, что продукция соответствуют всем стандартам и выпущены по ГОСТу.

Продукцию такого качества наиболее часто можно встретить на строительных рынках, нежели в специализированных магазинах. Продают её по весьма привлекательным ценам. Для проверки кабеля можно воспользоваться микрометром или штангенциркулем, приобретя для этого небольшой отрезок кабеля или договорившись с продавцом о проверке.

Если такого инструмента нет, то можно намотать десяток витков очищенного провода на отвертку, измерить суммарную толщину линейкой и поделить полученное значение на число витков. Если кабель многожильный, то можно найти толщину одной жилы и произвести перемножение.

Определив диаметр провода, легко найти его площадь сечения. Площадь проводника равняется квадрату диаметра, деленного на 4 и умноженного на число пи, равного 3,14.

Можно воспользоваться более простой формулой: площадь сечения равняется квадрату диаметра (двойному произведению) умноженному на 0,785.

Площадь сечения увеличивается пропорционально квадрату диаметра и очень сильно растет с его увеличением: медный провод диаметром 1 мм обладает площадью сечения 0,785 мм2 и выдерживает ток 10 ампер, а провод диаметром 2 мм, обладает уже площадью сечения равной 3,14 мм2 и выдерживает ток 30 ампер.

Правильный подбор кабеля и его надежное соединение с другими элементами электропроводки является залогом пожарной безопасности помещения. Неправильный выбор проводки может привести к её перегреву и возгоранию.

Проводка служит долгие годы, поэтому не стоит на ней экономить. Для этого необходимо подобрать с небольшим запасом провода нужного сечения воспользовавшись таблицами или выполнив самостоятельный совсем несложный расчет.

Фото проводов разного сечения


Также рекомендуем посетить:

Стандартные сечения проводов и кабелей

Сечение токоведущей части любого выпускаемого вида кабельной продукции является одним из самых важных его характеристик. При этом, если изоляционные свойства кабеля относятся больше к месту прокладки, типу монтажа и рабочему напряжению, то сечение — это величина, от которой напрямую зависит величина нагрузки на эту сеть, то есть мощность подключаемого оборудования. Этот параметр учитываться должен при организации и проектировании абсолютно любого типа проводки, будь то промышленные объекты или же частные жилые помещения. Для всех видов электрооборудования предусмотрены стандартные сечения проводов и кабелей. Оно измеряется в мм

2 и высчитывается по диаметру токоведущей жилы, так же как и площадь окружности.

Стандартный ряд сечений

Существует стандартный ряд сечений жил, выпускаемый заводами изготовителями кабельной продукции: 0,5; 0,75; 1; 1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500; 625; 800; 1000; 1200; 1600 кв. мм. При этом максимальное сечение токопроводящей жилы может достигать 6000 мм.кв. (кабель КСВДСП-6000).

Важно отметить, что минимальная величина для алюминиевого кабеля составляет 2,5 мм2. Это связано с низкой прочностью данного металла, так как количество изгибов до момента преломления у него значительно меньше чем у меди, то есть он легко может сломаться в местах присоединения, во время монтажа.

Полезно знать

Для частных домов и квартир, где применяется линейное напряжение 0,4 кВ и соответственно фазное 220 В чаще всего применяется провод сечением от самого минимального значения: 2,5 — алюминий и 1,5 мм.кв. медь. В основном такие стандартные токоведущие жилы подходят для цепей освещения.

Все остальные сечения и соответственно их диаметры зависят от мощности и, естественно, тока в цепях бытового электрооборудования. Для определения сечения, необходимого для монтажа электропроводки ниже приведена таблица. По ней, зная суммарную мощность электрических приборов, подключаемых к данной сети, с легкостью можно найти нужный размер жил.

При этом рекомендуется все же выбирать сечение немного с запасом, то есть ближайшее большее стандартное значение. Например, напряжение в сети однофазное 220 Вольт и у владельца помещения есть необходимость запитать приборы мощностью, допустим, 7 кВт. Согласно таблице нет такой мощности, а есть 5,9 и 8,3 кВт. Для медной проводки понадобится кабель с сечением жилы 4 мм2. Если бюджет ограничен и стоит задача выполнить проводку из алюминия, то ближайший больший указный в таблице параметр будет 7,9 кВт, что соответствует жиле 6 мм2.

Также можно комбинировать провода разного сечения, например от вводного автомата до распределительной коробки больше, а потом когда происходит разводка по группам электропотребителей или же по светильникам, то можно проложить провод меньшего размера. Главное, нужно помнить о правилах соединения алюминиевой и медной проводки, в случае появившейся такой необходимости.

На производстве мощности электрооборудования значительно выше чем в быту, да и напряжение в высоковольтных сетях это 6 кВ, 10 кВ, 35 кВ и т.д. Именно поэтому здесь стандартные сечения проводов и кабелей разнообразнее. Эта величина высчитывается с большим запасом, так как основные самые мощные приёмники электроэнергии — это электродвигатели, а они во время запуска могут усиливать ток в питающих их силовых цепях в 5–7 раз выше номинального.

Однако, для питания осветительной аппаратуры и цепей вторичной коммутации, осуществляемых контрольными кабелями, широко применяются всё те же провода 1,5–2,5 мм2 и их вполне хватает.

Для силовых цепей 6 кВ часто применяется алюминиевая кабельная продукция от 120 мм2. Если такого сечения кабеля не хватает, то пускают две линии, подключенные параллельно друг другу, тем самым разделяя нагрузку на каждый из них. В быту такие приёмы нецелесообразны. Встречается для особо мощного оборудования монтаж цепей с четырьмя или даже шестью, параллельно подключенными проводниками.

Бывают случаи, когда и для низковольтных цепей необходимы кабели с довольно большим сечением жил, как, например, в случае организации сварочных работ.

Выбор сечения провода очень важен и индивидуален, поэтому на производстве этим занимаются целые проектировочные бюро или же отдельные компании, в состав которых входят опытные инженеры проектировщики.

Напоследок рекомендуем просмотреть полезное видео по теме:

Надеемся, предоставленные стандартные сечения кабелей и проводов, а также таблицы, с помощью которых можно выбрать подходящий размер жил, помогли вам полностью разобраться с данным вопросом!

Будет полезно прочитать:

Подбор сечения медного провода: статья блога ТЕРМОЭЛЕМЕНТ

В любом типе электрооборудования и приборов, питающихся от сети, используются термостойкие провода. Тип изоляции и параметры самого провода сказываются на дальнейшей эксплуатации электрического устройства. Поэтому перед креплением провода и его заменой стоит провести точный расчет всех показателей, включая его сечение, силовую нагрузку и показатели мощности. От правильности расчета зависит не только целостность самого термостойкого провода, но и всего оборудования в целом.

Произвести расчет потребляемого тока для термостойких проводов, можно обратившись к технической формуле: I=P/U. Чаще всего вычисления приходится проводить для напряжения тока 220 Вольт. В качестве примера рассмотрим медный термостойкий провод. Для определения нужных параметров сечения следует суммировать токи всех потребителей, и в виде расчёта принять:

1. Открытые проволоки из медного сплава:

10 А = 1 мм кв. провода

2. Закрытые проволоки из медного сплава:

10 А = 1,25 мм кв

Сечение провода

Медные жилы

Токопроводящие жилы

Напряжение 220В Напряжение 380В

мм.кв.

Ток, А

Мощность, кВт

Ток, А

Мощность, кВт

1,5

19

4,1

16

10,5

2,5

27

5,9

25

16,5

4

38

8,3

30

19,8

6

46

10,1

40

26,4

10

70

15,4

50

33,0

16

85

18,7

75

49,5

25

115

25,3

90

59,4

35

135

29,7

115

75,9

50

175

38,5

145

95,7

70

215

47,3

180

118,8

95

260

57,2

220

145,2

120

300

66,0

260

171,6

Табличные данные особенно важны при подборе стабилизатора напряжения. Подобрать стабилизатор сложно, ведь выбрать более мощное по напряжению устройство, чем кабель нельзя. Провод ограничивает подачу тока и соответственно влияет на мощность.

Изготавливая новую проводку, стоит учитывать уже проделанный расчет. Но, следует запомнить, что при проведении всех вычислений нужно оставлять некий запас провода для предотвращения больших нагрузок на токоведущий элемент в процессе длительной эксплуатации электроприбора. Также обратите внимание, что при использовании некоторых сплавов желательно иметь мощные клеммные соединители, у которых имеется значительное пространство для контакта разных по сплаву проводов. Иначе такие соединения как медь и алюминий будут малонадежными и долго не прослужат.

Сечение медных жил

Длительная нагрузка

Номинальный авт. выкл.

Предельный авт. выкл.

Максимальная мощность

Характеристика однофазной бытовой нагрузки

мм.кв

ток, А

Ток, А

Ток, А

кВт, при 220В

1,5

19

10

16

4,1

освещение, сигнализация

2,5

27

16

20

5,9

розеточные группы, мелкая и средняя бытовая техника

4

38

25

32

8,3

водонагреватели и кондиционеры, электрические полы

6

46

32

40

10,1

электрические плиты и духовые шкафы

10

70

50

63

15,4

вводные питающие линии

Заказать термостойкие кабели высокого качества, можно у нас на сайте. В наличии есть кабели из разных сплавов обладающие широким рядом характеристик. При необходимости мы поможем подобрать правильный вид термостойких проводов под Ваше электроустройство.


Провод. Какие бывают сечения, марки проводов. Какие провода лучше использовать?

В электротехнике проводом принято называть металлический проводник, который имеет в своей структуре одну или несколько жил, по которым проходит электрический ток. Токопроводящая жила может состоять из одной (однопроволочная) или нескольких (многопроволочная) медных или алюминиевых проволок, скрученных вместе.

Следует отметить, что если провод состоит из нескольких жил, то его гибкость будет намного больше по сравнению с проводом с однопроволочной жилой.

Как уже говорилось, жилы проводов, которые используются для изготовления электроустановок или прокладки электропроводки, изготавливают из меди или алюминия.

В целях экономии чаще всего используют алюминиевые провода, так как их стоимость значительно ниже по сравнению с медными.

Стандартные сечения медных жил бывают следующими: 0,5; 1; 1,5; 2,5; 4; 6; 10; 16; 25; 35; 50; 70; 95; 120; 150; 185; 240; 300; 400; 500 и 800 мм2.

Алюминиевые провода будут иметь такие же сечения, только их начинают изготавливать с сечения 2,5 мм2.

Если сечение медного провода не превышает 10 мм2, то он может быть как однопроволочным, так и многопроволочным. Аналогичное утверждение верно и для алюминиевых проводов с сечением не более 25 мм2. Жилы большего сечения всегда будут многопроволочными.

Основные конструкции проводов приведены на рис. 1.

Рис. 1. Конструкции проводов: а — ПВ, АПВ; б — ППВС, АЛПВС, ПППС, АПППС; в — ППВ, АППВ, ППП, АППП, АППР; г — ПР, АПР; д — ПРД, ПРВЖ; е — ПУНП; ж — ПРФ, ПРФл; АПРФ; 1 — токопроводящая жила; 2 — изоляция жилы; 3 — разделительное основание; 4 — оплетка из хлопчатобумажной ткани; 5 — оплетка для ПРД из хлопчатобумажной пряжи, для ПРВД из ПВХ пластиката; 6 — оболочка из ПВХ-пластиката; 7— обмотка хлопчатобумажной пряжей; 8 — скрутка жил и обмотка бумажной пряжей; 9 — металлическая оболочка с фальцованным швом из сплава АМЦ или латуни

Провода классифицируются в первую очередь по наличию изоляционного слоя — голые и изолированные. В случае с изолированным проводом жила, по которой будет проходить электрический ток, должна находиться в оболочке из резины, поливинилхлорида или винипласта.

Для того чтобы провод был тщательно защищен от разного рода механических повреждений или воздействия внешней среды, изоляция бывает покрыта оплеткой из хлопчатобумажного материала, которую предварительно пропитывают противогнилостным составом.

Если изоляция провода, который проложен на вибрирующем механизме или же на участке, где имеется риск повреждения, то он должен иметь дополнительную защиту, изготовленную из оплетки из стальной оцинкованной проволоки.

По маркировке провода можно многое узнать о его ключевых характеристиках:

—              А — голый, изготовленный из алюминия, многопроволочный, площадь сечения жил находится в промежутке от 16 до 25 мм2;

—              АС — голый, сделанный из алюминия, многопроволочный, внутри него будет находиться сердечник, изготовленный из оцинкованной проволоки. Площадь сечения жил будет от 16 до 40 мм2;  

—              АСУ — точно такой же провод, как и АС, только площадь сечения будет значительно больше — от 120 до 400 мм2;

—              М — провод без изоляционного слоя, изготовленный из меди. Сечение токопроводящей жилы 4,6 и 10 мм2. В этом случае провод будет однопроволочным. В случае если он состоит сразу из нескольких жил, то его суммарное сечение будет составлять 16 мм2 и даже больше;

—              ПРГ — провод с гибкой проводящей жилой, изготовленный из меди, жила помещена в изоляционный слой, выполненный из резины, в качестве изоляции может выступать оплетка из хлопчатобумажной пряжи. Сечение такого провода, как правило, находится в промежутке от 7,5 до 25 мм2;

—              ДПРГ — двужильный гибкий провод, сделанный так же из меди и помещенный в резиновую или хлопчатобумажную изоляцию;

—              ПРФ и АПРФ — первый провод изготовлен из меди, а второй — из алюминия. В таких проводах может находиться одна, две или три жилы, изолированных друг от друга с помощью резиновой изоляции. Весь провод дополнительно обмотан прорезиненной тканью и покрыт металлической оболочкой. Сечение проводов составляет от 5 до 15 мм2;

—              ПРШП — медный провод с изготовленной резиновой изоляцией. Его обматывают резиновой тканью. Количество жил может быть различным: 1—3, 4-10, 5-30. Сечения также будут соответствующими — 1—95; 1—10; 1-2,5 мм2;

—              ПРТО — провод, изготовленный из меди, помещенный в изоляционный материал, в качестве которого выступает резина. Внешним слоем такого провода является оплетка из хлопчатобумажной пряжи, его сечение составляет от 2 до 8 мм2;

—              АПРТО — провод, аналогичный предыдущему, только в этом случае проводящая жила изготовлена из алюминия и ее сечение несколько больше — от 4 до 12 мм2;

—              ПВ — медный провод с одной проводящей электрический ток жилой, помещенной в изоляционный слой, изготовленный из поливинилхлорида. Сечение такого провода составляет от 2 до 6 мм2;

—              ППВ — также медный провод, но он имеет плоскую форму, сам по себе негибкий. Может включать в себя 2—3 токопроводящие жилы, которые изолированы друг от друга, их дополнительно разделяют пластикатом, сделанным из поливинилхлоридных материалов;

—              ППГВ — провод, аналогичный предыдущему, но имеющий необходимую гибкость;

—              АППВ — такой же провод, только жилы изготовлены из алюминия;

—              АПВ — алюминиевый провод, помещенный в изоляцию из поливинилхлоридных материалов с площадью поперечного сечения провода от 2,5 до 10 мм2.

Если провода имеют марку М, А, АС, АСУ, то они больше всего подойдут для изготовления воздушных линий электропередач, напряжение в которых составляет до 1000 В или даже немного больше.

Прокладывают такие провода на изоляторах, которые должны быть закреплены на опорах.

ПР и АПР используются в осветительных и силовых сетях, это можно делать как в помещениях, так и вне их. Они вполне подойдут для прокладки в пожароопасных помещениях и во вторичных цепях (например, в изоляционных трубах, на изоляторах, внутри бетонных или же металлических перекрытий, с прокладкой под провода изолирующих материалов).

ПРГ применяют для подключения различных электрических машин и приборов как внутри, так и вне зданий. Такие провода разрешается помещать в металлические рукава.

ПВ и АПВ лучше всего подойдут для изготовления осветительных и силовых сетей внутри помещений. Тип помещения может быть любым — сухим, сырым, особо сырым, с парами кислот или щелочей. Температура окружающей среды для такого типа проводов должна быть не более 40 «С. Этот тип проводов используется в осветительных щитах, пусковых ящиках, а также в закрытых шкафах, предназначенных для сооружения вторичных цепей, например в трубках, на изоляторах. Их можно укладывать на металлические или бетонные поверхности, только под провода необходимо в обязательном порядке уложить изолирующий материал.

ПГВ применяют для изготовления осветительных и силовых цепей, для сооружения вторичных цепей, их разрешается прокладывать в трубках и рукавах, изготовленных из металла.

ПРТО, АПРТО являются наиболее подходящими для изготовления силовых и осветительных сетей в помещениях, где не наблюдается опасность взрыва. Также их допустимо укладывать на вибрирующие поверхности машин, агрегатов и кранов. Кроме того, их применяют в тех случаях, когда вскрытие трубопровода будет достаточно проблематично, также их зачастую используют во вторичных цепях электропроводки.

ГТРГТ, ПРШП также подходят для прокладки силовых и осветительных сетей, сооружения вторичных цепей. Они используются для прокладки электропроводки в станках и механизмах даже в том случае, если на провод будет оказываться механическое воздействие. Однако не следует допускать, чтобы на такой провод действовали масла или эмульсии.

ПРФ, АПРФ прокладывают в сухих помещениях даже при условии, что на провод будет оказываться незначительное механическое воздействие. Эти провода используют в тех случаях, когда открытую проводку нужно изготовить незаметной, то есть открыто с закреплением с помощью скоб. Данные провода подходят для сооружения осветительных и силовых электрических сетей.

АР, АРД прокладываются в таких помещениях, где от провода не требуется значительной гибкости. Они подходят для сооружения осветительной электросети, напряжение которой не будет превышать 220 В.

ДПРГ допустимо использовать как внутри, так и снаружи строений, также они вполне подойдут для сооружения электросети в сыром помещении. Напряжение в сети, изготовленной из подобных проводов, не должно превышать 220 В. Такие провода используются там, где от них будет требоваться значительная степень гибкости, например внутри осветительных арматур.

ППВ, АППВ прокладывают в сухих и сырых помещениях по стенам и потолкам. Такие провода в состоянии выдержать напряжение до 500 В. Их открыто крепят с помощью гвоздей или скоб. Такой тип проводов подходит для осветительной проводки.

АППВС пригодны для сооружения проводки в сухом или сыром помещении. Напряжение в сети не должно превышать в этом случае 600 В. Данный тип проводов подходит для скрытой проводки, для ее прокладки под слоем штукатурки. 

Кабель сечением 6 мм2. Расчет сечения кабеля. Ошибки

Согласно печальной статистике, большинство пожаров происходит из-за неисправной электропроводки. Основной причиной возгораний может быть неверно рассчитанная нагрузка на кабель по сечению или старая электропроводка. Поскольку срок службы проводов ограничен, то ветхую проводку нужно просто вовремя заменять. Но как быть если новый, недавно уложенный кабель начал искрить? Чтобы избежать печальных последствий, важно знать, как правильно рассчитать толщину проводов еще на этапе составления схемы.

  • Алюминий или медь?
  • Расчет нагрузки

Алюминий или медь?

Замена/установка электропроводки – процесс весьма трудоемкий, поэтому ко всем его этапам следует подходить особенно тщательно. Вы же не хотите впоследствии вскрывать стены, чтобы найти место обрыва, при коротком замыкании. А начать лучше всего с выбора материала кабелей вашей будущей электросети. На данный момент используются два вида проводов:

Расчет нагрузки

Если вы все еще сомневаетесь в том, какой металл выбрать, предлагаем разобраться со следующим параметром. На этом этапе нужно произвести расчет потенциальной нагрузки на сеть. Для этого желательно заранее сделать схему, на которой будет отображено все электрооборудование. Помимо этого, схема упрощает проведение технического обслуживания или ремонта электропроводки, а также позволяет точно рассчитать количество кабеля и электроустановочных изделий.


А теперь давайте обратимся к таблице, на которой указан список электроприборов среднестатистического жителя двухкомнатной квартиры. В правом столбце указана средняя мощность потребителей, чтобы узнать точный показатель вашей техники следует обратиться к паспорту изделия.

Согласно вашей схеме электропроводки можно добавить другие электроприборы, чтобы расчет был более точным. Теперь зная общую мощность нужно рассчитать, какую максимальную силу тока должен выдержать кабель. Это делается по следующей формуле:


Где I – сила тока, К – коэффициент одновременности, P – мощность, U – напряжение.

Общая мощность умножается на коэффициент одновременности (он равен 0,75 и нужен на случай, если все приборы будут включены сразу) и делится на напряжение сети (220 или 380 вольт). Проведя расчет получаем – 10190×0,75/220=34,7 ампер (А). Полученные значения всегда округляются в большую сторону. Это делается для того, чтобы провода работали не на пределе своих возможностей. То есть кабель должен иметь пропускную способность не менее 35 А.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

Но этот расчет проведен для основного (вводного) кабеля, который заходит в помещение из щитка. Если вы используете медные жилы проводов и кабелей, то для отдельных групп электроприборов сечение проводов подбирается исходя из следующей таблицы:


Так, зная мощность приборов, которые будут подключаться, подбирается минимальное сечение кабеля. Например, у вас есть медный кабель сечением 10 мм2, пользуясь таблицей можно определить, что он выдержит ток 70 А, мощностью более 15кВт. Мы выяснили, что вводный кабель должен выдерживать нагрузку более 35 А. В столбце с напряжением 220 В, находим ближайшее большее значение –38 А и видим, что сечение жил должно быть от 4 мм2.

Если вы все-таки выбрали алюминиевые провода, то можно руководствоваться другой таблицей:


Как видите, алюминиевые жилы должны быть гораздо толще, чтобы пропустить ту же силу тока что медные. Например, то же 10 мм, но алюминиевый кабель выдержит лишь 50 А и нагрузку не более 11 кВт. Если у вас дома алюминиевая электропроводка и нет возможности заменить ее целиком, то при частичном ремонте лучше будет использовать аналогичный кабель.

Это что касается общего кабеля до распределительной коробки. Далее, производится расчет сечения по разным помещениям. Как правило, разводка на освещение берется не менее 1,5 мм, на простые до 16А розетки от 2,5 мм, а на мощные приборы (плита, стиральная машина, нагревательный котел и т. п.) можно рассчитать по формуле или воспользоваться таблицей.

Возьмем для примера частный дом, на кухне которого установлена плита мощностью 6 кВт, стиральная машина – 1,5 кВт и котел на 2,5 кВт. Общая мощность получается 10 кВт. Смотрим по таблице значение и видим, что для 10 кВт нужно сечение медного провода 6 мм2, но это будет максимальная нагрузка, поэтому лучше взять с запасом – 10 мм. Так, если что, вы сможете использовать дополнительные приборы на кухне, потому что максимум провод выдержит уже 15 кВт. Ну если вы решите использовать алюминиевый провод, то для таких же нагрузок нужно будет уже взять 16 мм2 кабель. А ведь это уже провод толщиной с палец, согласитесь, не очень удобно.

Теперь, когда мы разобрались с материалом и сечением проводов, можно было бы рассчитать требуемое количество и смело отправляться в магазин. Но перед этим нужно обговорить еще одну деталь – это маркировка кабелей. При выборе проводов, этот набор непонятных букв ставит в тупик любого неосведомленного покупателя. Поэтому будет лучше заранее ознакомиться с возможными аббревиатурами, чтобы точно знать, что вам нужно. Ниже представлен перечень возможных маркировок, которые могут вам встретиться.


Для примера, давайте разберем маркировку одного кабеля – ВВГ 3×2,5. Это кабель с медными жилами, в поливинилхлоридной изоляции и такой же ПВХ оболочкой. Цифра 3 означает, что у него три жилы, а 2,5 – это их сечение в мм2. Иногда встречаются дополнения, например – ВВГ нг-LS. Нг означает, что изоляция сделана из негорючего материала, а LS что при плавлении изоляция не выделяет дым. Поэтому для дома чаще всего выбирают кабель с маркировкой ВВГ нг.

Конечно, кабель используется далеко не только для электропроводки. Различные производственные мощные силовые установки (станки, линии, оборудование) требуют гораздо большей пропускной способности проводов. Но сечение кабелей в однофазной сети с напряжением 220 В не может быть слишком большим. Поэтому, когда речь заходит о больших пиковых нагрузках, к примеру – 10,15, 50 или 100кВт, целесообразно подключать их к трехфазной сетис напряжением 380 В.

В этом случае число питающих проводов увеличивается и, соответственно, возрастает их пропускная способность, при том же сечении. Например, у вас есть небольшое предприятие с нагрузкой на сеть – около 100 кВт. Естественно, нужна трехфазная сеть напряжением 380 В. По таблице получается, что ближайшее большее значение – 118 кВт, значит, сечение медного провода для нагрузки 100 кВт должно быть 70 мм2, для алюминиевого 95 мм.

Здравствуйте!

Наслышан о некоторых затруднениях, возникающих при выборе техники и её подключении (какая розетка необходима для духовки, варочной панели или стиральной машины). Для того чтобы Вы могли быстро и просто это решить, в качестве доброго совета предлагаю Вам ознакомится с представленными ниже таблицами.

Виды техники Входит в комплект Что ещё необходимо
клеммы
Эл. панель (независимая) клеммы кабель, подведённый от автомата, с запасом не менее 1 метра (для подсоединения к клеммам)
евророзетка
Газовая панель газовый шланг, евророзетка
Газовый духовой шкаф кабель и вилка для электроподжига газовый шланг, евророзетка
Стиральная машина
Посудомоечная машина кабель, вилка, шланги около 1300мм. (слив, залив) для подключения к воде вывод ¾ или проходной кран, евророзетка
Холодильник, винный шкаф кабель, вилка

евророзетка

Вытяжка кабель, вилкой может не комплектоваться гофрированная труба (не менее 1 метра) или короб ПВХ, евророзетка
Кофемашина, пароварка, свч-печь кабель, вилка евророзетка
Виды техники Розетка Сечение кабель Автомат+ УЗО⃰ в щите
Однофазное подключение Трехфазное подключение
Зависимый комплект: эл. панель, духовой шкаф около 11 Квт
(9)
6мм²
(ПВС 3*6)
(32-42)
4мм²
(ПВС 5*4)
(25)*3
отдельный не менее 25А
(только 380В)
Эл. панель (независимая) 6-15 Квт
(7)
до 9 Квт/4мм²
9-11 Квт/6мм²
11-15Квт/10мм²
(ПВС 4,6,10*3)
до 15 Квт/ 4мм²
(ПВС 4*5)
отдельный не менее 25А
Эл. духовой шкаф (независимый) около 3,5 — 6 Квт евророзетка 2,5мм² не менее 16А
Газовая панель евророзетка 1,5мм² 16А
Газовый духовой шкаф евророзетка 1,5мм² 16А
Стиральная машина 2,5 Квт евророзетка 2,5мм² отдельный не менее 16А
Посудомоечная машина 2 Квт евророзетка 2,5мм² отдельный не менее 16А
Холодильник, винный шкаф менее 1Квт евророзетка 1,5мм² 16А
Вытяжка менее 1Квт евророзетка 1,5мм² 16А
Кофемашина, пароварка до 2 Квт евророзетка 1,5мм² 16А

⃰ Устройство защитного отключения

Электрическое подключение при напряжении 220В/380В

Виды техники Максимальная потребляемая мощность Розетка Сечение кабель Автомат+ УЗО⃰ в щите
Однофазное подключение Трехфазное подключение
Зависимый комплект: эл. панель, духовой шкаф около 9.5Квт Рассчитанная на потребляемую мощность комплекта 6мм²
(ПВС 3*3-4)
(32-42)
4мм²
(ПВС 5*2.5-3)
(25)*3
отдельный не менее 25А
(только 380В)
Эл. панель (независимая) 7-8 Квт
(7)
Рассчитанная на потребляемую мощность панели до 8 Квт/3.5-4мм²
(ПВС 3*3-4)
до 15 Квт/ 4мм²
(ПВС 5*2-2.5)
отдельный не менее 25А
Эл. духовой шкаф (независимый) около 2-3 Квт евророзетка 2-2,5мм² не менее 16А
Газовая панель евророзетка 0.75-1.5мм² 16А
Газовый духовой шкаф евророзетка 0.75-1,5мм² 16А
Стиральная машина 2,5-7(с сушкой) Квт евророзетка 1.5-2,5мм²(3-4 мм²) отдельный не менее 16А-(32)
Посудомоечная машина 2 Квт евророзетка 1.5-2,5мм² отдельный не менее 10-16А
Холодильник, винный шкаф менее 1Квт евророзетка 1,5мм² 16А
Вытяжка менее 1Квт евророзетка 0.75-1,5мм² 6-16А
Кофемашина, пароварка до 2 Квт евророзетка 1,5-2.5мм² 16А

Выбирая провод, в первую очередь следует обратить внимание на номинальное напряжение, которое не должно быть меньше чем в сети. Во вторую очередь следует обратить внимание на материал жил. Медный провод имеет большую гибкость по сравнению с алюминиевым проводом, и его можно паять. Алюминиевые провода нельзя прокладывать по сгораемым материалам.

Также следует обратить внимание на сечение жил, которое должно соответствовать нагрузке в амперах. Определить силу тока в амперах можно разделив мощность (в ваттах) всех подключаемых устройств на напряжение в сети. Например, мощность всех устройств 4,5 кВт, напряжение 220 V, это 24,5 ампера. Найдем по таблице нужное сечение кабеля. Это будет медный провод с сечением 2 мм 2 или алюминиевый провод с сечением 3 мм 2 . Выбирая провод нужного вам сечения, учитывайте, легко ли его будет подключать к электро-устройствам. Изоляция провода должна соответствовать условиям прокладки.

Проложенные открыто
S Медные жилы Алюминиевые жилы
мм 2 Ток Мощность кВт Ток Мощность кВт
А 220 В 380 В А 220 В 380 В
0,5 11 2,4
0,75 15 3,3
1 17 3,7 6,4
1,5 23 5 8,7
2 26 5,7 9,8 21 4,6 7,9
2,5 30 6,6 11 24 5,2 9,1
4 41 9 15 32 7 12
6 50 11 19 39 8,5 14
10 80 17 30 60 13 22
16 100 22 38 75 16 28
25 140 30 53 105 23 39
35 170 37 64 130 28 49
Проложенные в трубе
S Медные жилы Алюминиевые жилы
мм 2 Ток Мощность кВт Ток Мощность кВт
А 220 В 380 В А 220 В 380 В
0,5
0,75
1 14 3 5,3
1,5 15 3,3 5,7
2 19 4,1 7,2 14 3 5,3
2,5 21 4,6 7,9 16 3,5 6
4 27 5,9 10 21 4,6 7,9
6 34 7,4 12 26 5,7 9,8
10 50 11 19 38 8,3 14
16 80 17 30 55 12 20
25 100 22 38 65 14 24
35 135 29 51 75 16 28

Маркировка проводов.

1 -я буква характеризует материал токопроводящей жилы:
алюминий — А, медь — буква опускается.

2-я буква обозначает:
П — провод.

3-я буква обозначает материал изоляции:
В — оболочка из поливинилхлоридного пластиката,
П — оболочка полиэтиленовая,
Р — оболочка резиновая,
Н — оболочка наиритовая.
В марках проводов и шнуров могут также присутствовать буквы, характеризующие другие элементы конструкции:
О — оплетка,
Т — для прокладки в трубах,
П — плоский,
Ф -т металлическая фальцованная оболочка,
Г — повышенная гибкость,
И — повышенные защитные свойства,
Р — оплетка из хлопчатобумажной пряжи, пропитанная противогнилостным составом, и т. д.
Например: ПВ — медный провод с поливинилхлоридной изоляцией.

Установочные провода ПВ-1, ПВ-3, ПВ-4 предназначены для подачи питания на электрические приборы и оборудование, а также для стационарной прокладки осветительных электросетей. ПВ-1 выпускается с одно-проволочной токопроводящей медной жилой, ПВ-3, ПВ-4 — со скрученными жилами из медной проволоки. Сечение проводов составляет 0,5-10 мм 2 . Провода имеют окрашенную ПВХ изоляцию. Применяются в цепях переменного с номинальным напряжением не более 450 В с частотой 400 Гц и в цепях постоянного тока с напряжением до 1000 В. Рабочая температура ограничена диапазоном -50…+70 °С.

Установочный провод ПВС предназначен для подключения электрических приборов и оборудования. Число жил может быть равным 2, 3, 4 или 5. Токопроводящая жила из мягкой медной проволоки имеет сечение 0,75-2,5 мм 2 . Выпускается со скрученными жилами в ПВХ-изоляции и такой же оболочке.

Применяется в электросетях с номинальным напряжением, не превышающим 380 В. Провод рассчитан на максимальное напряжение 4000 В, с частотой 50 Гц, приложенное в течение 1 мин. Рабочая температура — в диапазоне -40…+70 °С.

Установочный провод ПУНП предназначен для прокладки стационарных осветительных сетей. Число жил может быть равным 2,3 или 4. Жилы имеют сечение 1,0-6,0 мм 2 . Токопроводящая жила из мягкой медной проволоки имеет пластмассовую изоляцию в ПВХ-оболочке. Применяется в электросетях с номинальным напряжением не более 250 В с частотой 50 Гц. Провод рассчитан на максимальное напряжение 1500 В с частотой 50 Гц в течение 1 мин.

Силовые кабели марки ВВГ и ВВГнг предназначены для передачи электрической энергии в стационарных установках переменного тока. Жилы изготовлены из мягкой медной проволоки. Число жил может составлять 1-4. Сечение токопроводящих жил: 1,5-35,0 мм 2 . Кабели выпускаются с изоляционной оболочкой из поливинилхлоридного (ПВХ) пластиката. Кабели ВВГнг обладают пониженной горючестью. Применяются с номинальным напряжением не более 660 В и частотой 50 Гц.

Силовой кабель марки NYM предназначен для промышленного и бытового стационарного монтажа внутри помещений и на открытом воздухе. Провода кабеля имеют одно-проволочную медную жилу сечением 1,5-4,0 мм 2 , изолированную ПВХ-пластикатом. Наружная оболочка, не поддерживающая горения, выполнена также из ПВХ-пластиката светло-серого цвета.

Вот, вроде бы главное, что желательно понимать при выборе техники и проводов к ним))

Содержание:

Надежная и безопасная работа любых электрических приборов и оборудования во многом зависит от правильного выбора проводов. Большое значение имеет сечение медного провода, таблица позволяет определить его необходимые параметры, в зависимости от токовой нагрузки и мощности. Неправильный подбор кабельной продукции может вызвать короткое замыкание и последующее возгорание. При небольшом сечении провода и слишком высокой мощности оборудования произойдет его перегрев, что вызовет аварийную ситуацию.

Сечение и мощность провода

При выборе кабельной продукции в первую очередь необходимо учитывать существенные различия между медными и алюминиевыми проводами.

Сечение проводов по мощности таблица

Медь является более устойчивой к различного рода изгибам, она обладает более высокой электропроводностью и меньше подвержена воздействию коррозии. Поэтому одна и та же нагрузка предусматривает меньшее сечение медного провода по сравнению с алюминиевым. В любом случае, приобретая электропровод, нужно делать определенный запас его сечения, на случай возрастания нагрузок в перспективе, когда будет устанавливаться новая бытовая техника. Кроме того, сечение должно соответствовать максимальной нагрузке, или других защитных устройств.

Величина тока относится к основным показателям, оказывающим влияние на расчеты площади сечения проводов. То есть, определенная площадь имеет возможность пропускать через себя определенное количество тока в течение продолжительного времени. Этот параметр также называется длительно допустимой нагрузкой.


Само сечение представляет собой общую площадь, которую имеет срез токопроводящей жилы. Для его определения используется формула вычисления площади круга. Таким образом, Sкр. = π × r2, где число π = 3,14, а r — будет радиусом измеряемой окружности. При наличии в кабельной жиле сразу нескольких проводников, измеряется диаметр каждого из них, а затем полученные данные суммируются. Чтобы найти радиус, нужно вначале с помощью микрометра или штангенциркуля. Наиболее эффективным методом считается определение площади сечения по специальным таблицам, с учетом необходимых показателей.

Прежде всего, принимаются во внимание конкретные условия эксплуатации, а также предполагаемая величина максимального тока, который будет протекать по данному кабелю в течение продолжительного времени.

Сечение медных проводов и мощность электрооборудования

Перед монтажом того или иного электрического оборудования необходимо выполнить все расчеты. Они проводятся с учетом полной мощности будущих потребителей электроэнергии. Если монтируется сразу несколько единиц оборудования, то расчеты проводятся в соответствии с их суммарной мощностью.

Мощности каждого прибора указываются на корпусе или в технической документации на изделие и отражаются в ваттах (Вт) или киловаттах (кВт). Для того, чтобы рассчитать сечение медного провода по мощности, таблица со специальными параметрами поможет подобрать наиболее оптимальный вариант.

В стандартных городских квартирах как правило действует однофазная система электроснабжения, напряжение которой составляет 220 вольт. Расчеты проводятся с учетом так называемого коэффициента одновременности, составляющему 0,7. Этот показатель означает возможность одновременного включения около 70% установленного оборудования. Данный коэффициент нужно умножить на значение суммарной мощности всех имеющихся приборов. По полученному результату в таблице определяется необходимое сечение проводки в соответствии с заданными техническими и эксплуатационными условиями.

Как определить сечение для многожильного провода

Рано или поздно, любой «рукастый» мужчина сталкивается с тем, что ему случайно понадобилось поменять электропроводку, или просто подключить кухонную электрическую плиту, как произошло недавно у меня. При этом, в магазине электротоваров, менеджеры по продажам всегда готовы Вам «подсунуть» что угодно, только не то, что надо. Они с умным видом, будут Вам доказывать свою правоту, совершенно не разбираясь в сути вопроса. Бывают и другие случаи необходимости разобраться, какой кабель необходим для питания от промышленной сети того, или иного электрического прибора или устройства. Этому и посвящена статья.

В конце статьи имеются две таблички, в которых Вы можете найти для себя информацию, какое сечение кабеля необходимо выбрать для Вашей проводки если она выполнена открыто и скрытно.

Сечение любого провода, в том числе сечение кабеля для электрической проводки определяется строго от выбранного значения величины, которая называется – допустимая плотность тока Δ . Единица измерения — А/мм². Эта величина характеризует нагрузку на провод и выбирается в зависимости от условий эксплуатации электрических проводов. Она может быть в пределах от 2 А/мм² – в закрытой электрической проводке, до 5 А/мм² – для монтажных проводов в несгораемой изоляции. Необходимый диаметр провода по заданной силе тока и его плотности определяется из формулы:

Для обычной электрической проводки плотность тока Δ (норма нагрузки) выбирается около 2 А/мм², поэтому формула принимает вид:

Необходимо выбрать сечение кабеля (найти площадь поперечного сечения) проводки, которое определяется из формулы:

Почему для проводки выбирается маленькое значение плотности тока? А на все случаи жизни, будет очень неприятно вытягивать из стены оплавившуюся проводку из-за того, что чуточку не рассчитали его сечение, или перестарались с нагрузкой на сеть!

Вот, в принципе, и вся «математика»!

Таблица выбора сечения кабеля для открытой проводки электрической сети

Сечение жилы кабеля, мм²Диаметр жилы кабеля, ммПроводка с медной жилойПроводка с алюминиевой жилой
Ток, АТок, АМощность, кВт при напряжении сети 220 ВМощность, кВт при напряжении сети 380 В
0,50,8112,4
0,750,98153,3
1,01,12173,76,4
1,51,38235,08,7
2,01,59265,79,8214,67,9
2,51,78306,611,0245,29,1
4,02,26419,015,0327,012,0
6,02,765011,019,0398,514,0
10,03,578017,030,06013,022,0
16,04,5110022,038,07516,028,0
25,05,6414030,053,010023,039,0

Таблица выбора сечения кабеля для скрытой проводки электрической сети
(в кабель-канале, трубе)

Сечение жилы кабеля, мм²Диаметр жилы кабеля, ммПроводка с медной жилойПроводка с алюминиевой жилой
Ток, АМощность, кВт при напряжении сети 220 ВМощность, кВт при напряжении сети 380 ВТок, АМощность, кВт при напряжении сети 220 ВМощность, кВт при напряжении сети 380 В
11,12143,05,3
1,51,38153,35,7
2,01,59194,17,2143,05,3
2,51,78214,67,9163,56,0
4,02,26275,910,0214,67,9
6,02,76347,712,0265,79,8
10,03,575011,019,0388,314,0
16,04,518017,030,05512,020,0
25,05,6410022,038,06514,024,0
35,06,6813529,051,07516,028,0

Обратите внимание, что для скрытой проводки необходимо выбирать сечение кабеля на 25 — 30 % больше, чем для открытой проводки. Связано это с тем, что открытая проводка охлаждается естественным образом, а скрытая проводка, находясь в различных «канал-трубах» или просто «замурованная» в стену, не имеет возможности охлаждаться, особенно если стена выполнена из пористых теплоизоляционных материалов.

Выбор сечения провода | Электрик

Но что же на самом деле такое «сечение» и как его измерить на практике?

Не стоит думать что сечение провода это его диаметр…

Площадь поперечного сечения (S) кабеля рассчитывается по формуле S = (Pi * D2)/4, где Pi – число пи, равное 3,14, а D – диаметр.

Безопасная эксплуатация состоит в том, что в случае если вы подберете сечение не соответственное его токовым перегрузкам, то это приведет к чрезмерному перегреву электропровода, плавлению изоляции, короткому замыканию и пожару.

Поэтому к вопросу о выборе сечения электропровода нужно отнестись довольно серьезно. 

Что нужно знать для правильного выбора провода?

Главным признаком, по которому планируют провод, считается его продолжительно разрешенная токовая перегрузка. Не вдаваясь в пространные рассуждения, это такая величина тока, которую он способен пропускать в протяжении долгого времени.

Чтоб отыскать значение номинального тока, нужно подсчитать мощность всех подключаемых электрических приборов в жилище. Рассмотрим пример расчета сечения электропровода для обыкновенной двухкомнатной жилплощади. Список нужных устройств и их примерная мощность указана в таблице.

Принимая во внимание значение тока, сечение электропровода находят по таблице. В случае если окажется что расчетное и табличное значения токов не совпадают, то в данном случае подбирают наиблежайшее большее значение. К примеру расчетное значение тока составляет 23 А, избираем по таблице наиблежайшее большее 27 А — с сечением 2.5 мм2 (для медного многожильного электропровода прокладываемого по воздуху).

Предлагаю вашему вниманию таблицы возможных токовых нагрузок кабелей с медными и алюминиевыми жилами с изоляцией из поливинилхлоридного пластика.

Важно! Для четырехжильных и пятижильных кабелей, у которых все жилы одинакового сечения при применении их в четырех-проводных сетях значение из таблицы необходимо помножить на коэффициент 0,93.

К примеру у Вас трехфазная нагрузка мощностью Р=15 кв-т Нужно выбрать медный кабель (прокладка по воздуху). Как высчитать сечение? Сначала нужно высчитать токовую нагрузку отталкиваясь от этой мощности, чтобы достичь желаемого результата можем использовать формулу для трехфазной сети: I = P / √3 · 380 = 22.8 ≈ 23 А.

По таблице токовых нагрузок избираем сечение 2.5 мм2 (ему допускаемый ток 27А). Хотя потому что кабель у Вас четырехжильный (либо пяти- здесь уже особенной разницы нет) сообразно указаний ГОСТ 31996—2012 подобранное значение тока необходимо помножить на коэффициент 0.93. I = 0.93 * 27 = 25 А. Что возможно для нашей нагрузки (расчетного тока).

Хотя в виду того что почти все изготовители отпускают кабели с заниженным сечением в этом случае я бы рекомендовал брать кабель с запасом, с сечением намного выше — 4 мм2.

Важно! Когда нагрузка именуется в кВт — то идет речь о общей нагрузке. То есть для однофазного потребителя нагрузка будет указана по одной фазе, а для трехфазного — совокупно по всем 3. Когда значение нагрузки названо в амперах (А) — речь практически постоянно идет о нагрузке на 1 жилу (либо фазу).

Какой провод лучше использовать медный или алюминиевый?

На сегодня для монтажа как открытой проводки так и скрытой, конечно широкой известностью пользуются медные электропровода. Медь, сравнивая с алюминием, наиболее эффективна:

1) она прочнее, более мягенькая и в местах перегиба не ломается по сравнению с алюминием;

2) менее подвержена коррозии и окислению. Соединяя алюминий в разветвительной коробке, места скрутки с течением времени окисляются, что и ведет к утрате контакта;

3) проводимость меди повыше нежели алюминия, при схожем сечении медный провод способен вынести огромную токовую нагрузку нежели алюминиевый. 

Недочетом медных проводов считается их большая цена. Цена их в 3-4 раза выше алюминиевых. Хотя медные электропровода по цене дороже все таки они считаются наиболее всераспространенными и пользующимися популярностью в применении нежели алюминиевые. 

Расчет сечения медных проводов и кабелей

Подсчитав нагрузку и определившись с материалом (медь), рассмотрим пример расчета сечения проводов для отдельных групп потребителей, на случае двухкомнатной жилплощади. 

Как понятно, вся нагрузка разделяется на 2 группы: силовую и осветительную.

В нашем случае главной силовой нагрузкой станет розеточная группа установленная в столовой и в ванной комнате. Потому что там устанавливается более сильная техника (электрочайник, микроволновка, морозильник, бойлер, стиральная машинка и т.д.).

Для данной розеточной группы выбираем провод сечением 2.5мм2. Если соблюдать условие, что силовая нагрузка станет разбросана по различным розеткам. Что это означает? К примеру в столовой для включения всей домашней техники необходимо 3-4 розетки присоединенных медным электропроводом сечением 2.5 мм2 каждая. 

В случае если вся техника подключается через одну единственную розетку, то сечения в 2.5 мм2 станет мало, в данном случае необходимо применять провод сечением 4-6 мм2. В жилых комнат для питания электророзеток применяют провод сечением 1.5 мм2 но завершающий выбор необходимо брать на себя в последствии соответственных расчетов.

Питание всей осветительной нагрузки производится электропроводом сечением 1.5 мм2.

Нужно осознавать что мощность на различных участках проводки станет различной, в соответствии с этим и сечение питающих проводов также разным. Самое большое его значение станет на вводном участке жилплощади, потому что через него проходит вся нагрузка. Сечение вводного питающего электропровода подбирают 4 – 6 мм2.

При монтаже проводки используют электропровода и кабели марки ПВС, ВВГнг, ППВ, АППВ.

Наиболее распространенные марки проводов и кабелей:

ППВ — медный плоский двух- либо трехжильный с одинарной изоляцией для прокладки скрытой либо недвижной открытой электропроводки;

АППВ — алюминиевый плоский двух- либо трехжильный с одинарной изоляцией для прокладки скрытой либо недвижной открытой электропроводки;

ПВС — медный круглый, численность жил — до 5, с двойной изоляцией для прокладки открытой и скрытой электропроводки;

ШВВП – медный круглый со скрученными жилами с двойной изоляцией, эластичный, для включения домашних устройств к источникам питания;

ВВГ — кабель медный круглый, до 4 жил с двойной изоляцией для прокладки в земле;

ВВП — кабель медный круглый одножильный с двойной изоляцией для прокладки в воде.

Как можно заметить, выбор для прокладки проводки не велик и ориентируется зависимо от того, какой формы кабель наиболее подходит для монтажа, круглой либо плоской. Кабель круглой формы комфортнее прокладывается через стенки, в особенности в случае если делается ввод с улицы в здание. Понадобится просверлить отверстие чуток больше поперечника кабеля, а при большей толщине стенки это делается актуальным. Для внутренней электропроводки комфортнее использовать тонкий кабель ВВГ.

Медная проволока – обзор

Применение медных порошков ОРВ

Медь, упрочненная дисперсией оксидов, получила широкое признание на рынке при серийном применении [31,34]. Основные приложения перечислены ниже.

Провода . Медный провод ОДС используется в свинце для ламп накаливания. Его способность сохранять прочность при высоких температурах позволяет выполнять сварку стекла с металлом без аномального размягчения свинца. Это, в свою очередь, устраняет необходимость в дорогостоящих опорных молибденовых проволоках.Превосходная прочность стержня позволяет уменьшить диаметр стержня для экономии материала. Медная проволока ODS также может использоваться в выводах для дискретных электронных компонентов, таких как диоды.

Лезвия реле и опоры контактов . Эти части включают в себя токоведущие плечи, которые соединяют неподвижные точки контакта с электрической цепью. Как правило, к пластине реле и опорам контактов припаяны или приклепаны серебряные контакты. Способность меди ODS сохранять прочность после воздействия повышенной температуры позволяет припаивать контакты к лезвию без заметной потери прочности.Из-за более высокой электропроводности меди ODS в некоторых реле она заменила обычные медные сплавы, такие как фосфористая бронза и бериллиевая медь.

Скользящие электрические контакты . Медные стержни ОДС используются в подвесных скользящих электрических контактах скоростных электропоездов. Их высокая стойкость к абразивному износу обеспечивает до 10 раз более длительный срок службы контактов и значительно снижает затраты на техническое обслуживание. Чем выше скорость поезда, тем больше преимущество меди ODS над другими материалами на основе меди.

Электроды для контактной сварки . Медные электроды ODS широко используются для контактной сварки в автомобильной, бытовой и других отраслях промышленности по обработке листового металла. Хорошо известно, что прилипание электродов к заготовке является серьезной проблемой при сварке оцинкованной стали и стали с другим покрытием. Это обычно приводит к тому, что электроды отрываются от своих держателей и требуют остановки сборочной линии для замены электродов. Такие перерывы обходятся очень дорого. Медные электроды ODS исключают прилипание к оцинкованной стали и стали с другим покрытием.Увеличение использования стали с покрытием в автомобильной промышленности предсказало дальнейшее широкое использование медных электродов ODS.

Контактные наконечники для сварки в среде инертного газа . Стойкость меди ODS к абразивному износу стальной проволоки позволяет наконечникам сохранять диаметр отверстия и сводит к минимуму блуждание дуги. Это важно для автоматических сварочных линий. Неприлипающее свойство меди ODS также сводит к минимуму накопление материала.

Компоненты рентгеновских и микроволновых трубок .Другим примером применения меди ODS являются стержни для вращающихся анодов в рентгеновских трубках, где важны сохранение высокой прочности после пайки и герметизация стекла к металлу. Высокая теплопроводность меди ODS также обеспечивает более эффективный отвод тепла, что снижает рабочую температуру и обеспечивает более длительный срок службы и более тихую работу трубки.

Компоненты ускорителя частиц . Дисперсно-упрочненные оксидом медные пластины и стержни используются в зеркалах и поглотителях рентгеновского излучения из-за их высокой теплопроводности, высокой прочности, сопротивления ползучести и герметичности в вакууме.Пучки высокоэнергетических частиц формируются и фокусируются с помощью зеркал, линз и призм в больших полых кольцах в форме пончика,

Другие применения . Другие различные применения меди ODS включают анодные стержни в хлоридных элементах, магнитные катушки сильного поля, анодные стержни хлорных элементов, электроды для электроразрядной обработки, компоненты высокоскоростных двигателей и генераторов, коммутаторы и компоненты гибридных схем.

Медные детали и компоненты — флагманская компания группы CM, занимающаяся производством и экспортом высококачественного литья из цветных металлов, компонентов и электроустановочных изделий.Мы производим недорогие, но прецизионные металлические компоненты на наших трех производственных площадках уже более 3 десятилетий. Мы производим все типы медных деталей, медных зажимов, медных шайб, медных электрических клемм, латунных заусенцев для шлангов, муфт для шланговых фитингов, латунных токарных деталей, токарных деталей с ЧПУ, медных обработанных деталей, латунных вставок, пластиковых вставок для литья под давлением, компонентов с ЧПУ, латунных гаек. , медные прокладки в наконечниках, медные поковки, медные прессованные детали, медные клеммные колодки, медные кабельные наконечники и т. д.

 

  
Стремление к специализации и полная приверженность качеству позволили нам добиться успеха на местном и зарубежных рынках в качестве ведущего производителя медных деталей и медных компонентов из Индии. Профессиональные инженерные знания в сочетании с конкурентоспособной, но квалифицированной индийской рабочей силой помогли ей захватить высококачественные рынки Западной Европы и США. Мы гордимся тем, что предлагаем экономически эффективные решения для удовлетворения строгих потребностей наших клиентов. Собственный литейный цех и инновационная концепция литья под давлением и механической обработки цельных изделий дают компании явное конкурентное преимущество перед конкурентами.На разных этапах производства осуществляется строгий контроль качества, и только тот материал, который соответствует строгим нормам, попадает на рынок.

Список продуктов ни в коем случае не является исчерпывающим, и, будучи динамичной группой, мы всегда заинтересованы в добавлении новых продуктов в наш ассортимент. Вот некоторые выдающиеся продукты:

  • Медь Латунь Болты Гайки Винты Крепеж
  • Детали токарной обработки из латуни Компоненты
  • Бронзовое литье Медное литье
  • Бронзовые фитинги Бронзовые фитинги для труб
  • Бронзовые фитинги для шлангов Латунные заусенцы для шлангов
  • Токарные детали с ЧПУ Обработанные компоненты
  • Токарные детали с ЧПУ Обработанные компоненты
  • Медные хомуты Хомуты для медных труб
  • Зажимы для медных заземляющих соединителей
  • Медный крепеж
  • Медные клеммные колодки
  • Медные фитинги Фитинги для медных труб
  • Медная ковка Штамповка кованых штампованных деталей Компоненты
  • Медные наконечники Кабельные соединители Кабельные клеммы
  • Формовочные вставки Резьбовые вставки
  • Штампованные детали Штампованные детали из листового металла
  • Медные шайбы Плоские шайбы

Медные детали Медные компоненты Медные фитинги Медные прессованные детали Механически обработанные компоненты Медные электрические клеммы Медные наконечники Кабельные клеммы Медные разъемы из Индии

МЕДНЫЕ ЧАСТИ И КОМПОНЕНТЫ ИНДИЯ
Участок 451 / 452
Промышленная зона GIDC
Удьогнагар
Джамнагар 361005 Гуджарат
Индия
Телефон :
Факс :
Электронная почта : [email protected]ком
Контактное лицо : Ришаб Шах
Имя :
Адрес :
Мобильный :
Электронная почта :
Страна : ArgentinaAustriaBahrainBrazilBulgariaCanadaChileChinaCroatiaCyprusCzechRepublicDenmarkEgyptEstoniaJamaicaJapanJordanKuwaitFinlandFranceGermanyGreeceUnited KingdomUnited StatesHungaryNetherlandsNew ZealandNorwayOmanPhilippinesPolandPortugalQatarRomaniaRussiaSaudi ArabiaSenegalSerbia и MontenegroSingaporeSlovakiaSloveniaSouth AfricaIrelandIsraelItalyLatviaLebanonLibyaLithuaniaMalaysiaMexicoMoroccoSpainSwedenSwitzerlandSyriaTaiwanThailandTrinidad и TobagoTunisiaTurkeyUgandaUkraineUnited арабских EmiratesOtherOthers
Продукт : Муфты Бронзовые муфты Фитинги Резьбовые соединения Твердые бронзовые заглушки Квадратная головка45-градусные бронзовые уличные локти90-градусные бронзовые локти Уличные локтиБолтовые наконечники Медный сплав Бронзовые болтовые наконечники СоединителиБолты Медные болты с шестигранной головкой Бронзовые винты с шестигранной головкойОтливка латуниОтливка медных сплавовЛатунные зазубрины для шлангов Литье кованой латуни Вставки пластиковой формы во вставки Латунные гайкиЛатунные токарные детали Точеные детали из латуниБронзовые колена под углом 45 градусов Бронзовые заглушки Фланцы из бронзыБронзовые втулки Бронзовые шестигранные втулки Резьбовые втулки Фитинги Шестигранные втулки Втулки из бронзы Литье из свинцовой бронзы Бронзовые отводы 90-градусный редукционный отвод Бронзовые отводы Бронзовый отвод под 90 градусов с резьбой ОтводыБронзовые фитинги для пожарных рукавовФитингиБронзовые фитингиБронзовые заглушкиБронзовые фитингиКресты Бронзовый напольный фланецБронзовые хомуты для горячей линииБронзовые гайки Стопорные гайкиБронзовые трубные гайкиБронзовые заглушкиБронзовые пробки с квадратной головкойБронзовые редукционные муфтыФитингиБронза e Квадратная заглушка Бронзовый тройник с потайной головкой Бронзовый тройник Редукционные фитинги Бронзовые тройники Бронзовые резьбовые тройники Бронзовые тройники Бронзовые резьбовые фланцы Бронзовые бронзовые фитинги для корпуса Бронзовые морские фитингиБронзовые соединения Бронзовые трубные соединения Фитинги для труб Медные шиныМедные шины Перфорированные шины Медные соединители типа CМедное литье Медные сплавы Стандарты США Медные зажимы Латунные зажимы Заземляющий стержень к ленте Зажимы B зажимыМедные токарные деталиМедные поковкиМедные поковки кованые детали Медные кованые компонентыМедные прокладки Медные уплотнительные прокладки Прокладки головки Медные заземляющие хомуты Бронзовые заземляющие хомуты Прямая закапываниеМедные проушины ЛуженыеМедные наконечники Кабельные наконечники Медные наконечники аккумуляторовМедные фрезерованные компоненты деталейМедные гайки Медные шестигранные гайки Стопорные гайки Медные оливки Медные наконечники Компрессионные оливкиМедные прессованные детали Медное прессование и штамповкаМедное уплотнение было hers DIN 7603 Медные шайбыМедные шпильки Полнорезьбовые шпильки Резьбовые стержни МедьМедные клеммные колодки Клеммные колодкиМедные шайбы DIN 125 Медь DIN 125 тип AB Плоские шайбыНаконечники Медные наконечники для тросовПЛОСКИЕ ШАЙБЫ ЛАТУННЫЕ ШАЙБЫ DIN 125 A Заземляющие стержни Зажимы Медная бронза Заземляющий стержень Зажимы Зажимы для заземляющего стержняЗакладные наконечники Медь Заземление Накладные наконечникиМетрические шайбы Медные шайбыФормовочные вставки ЛатуньДетали из листового металла Латунь Компоненты из листового металлаДругое
Файл продукта :
  Запрос :
     

Медная проволока | AMERICAN ELEMENTS®


РАЗДЕЛ 1.ИДЕНТИФИКАЦИЯ

Наименование продукта: Медная проволока

Номер продукта: Все применимые коды продуктов American Elements, например. CU-M-02-W , КР-М-03-З , ТС-М-04-З , КР-М-05-З , CU-M-06-W

Номер CAS: 7440-50-8

Соответствующие установленные области применения вещества: Научные исследования и разработки

Информация о поставщике:
American Elements 108084
Los Angeles, CA
Тел.: +1 310-208-0551
Факс: +1 310-208-0351

Телефон службы экстренной помощи:
Внутренний, Северная Америка: +1 800-424-9300
Международный: +1 703-527-3887


РАЗДЕЛ 2.ИДЕНТИФИКАЦИЯ ОПАСНОСТИ

Классификация вещества или смеси
Классификация в соответствии с Регламентом (ЕС) № 1272/2008
Вещество не классифицируется как опасное для здоровья или окружающей среды в соответствии с регламентом CLP.
Классификация в соответствии с Директивой 67/548/ЕЭС или Директивой 1999/45/ЕС
Н/Д
Информация об особых опасностях для человека и окружающей среды:
Нет данных
Опасности, не классифицированные иначе
Нет данных
Элементы маркировки
Маркировка согласно с Регламентом (ЕС) № 1272/2008
Н/Д
Пиктограммы опасности
Н/Д
Сигнальное слово
Н/Д
Указания на опасность
Н/Д
Классификация WHMIS
Не контролируется
Система классификации
Рейтинги HMIS (шкала 0-рейтинги 4)
(Система идентификации опасных материалов)
Здоровье (острые воздействия) = 0
Воспламеняемость = 0
Физическая опасность = 0
Прочие опасности
Результаты оценки PBT и vPvB
PBT: н/д
vPvB: н/д

РАЗДЕЛ 3.СОСТАВ/ИНФОРМАЦИЯ О КОМПОНЕНТАХ

Вещества
Номер CAS / Название вещества:
7440-50-8 Медь
Идентификационный номер(а):
Номер ЕС: 231-159-6


ПЕРВАЯ ПОМОЩЬ Описание мер первой помощи


Общая информация
Никаких специальных мер не требуется.
При вдыхании:
В случае жалоб обратиться за медицинской помощью.
При попадании на кожу:
Обычно продукт не раздражает кожу.
При попадании в глаза:
Промыть открытые глаза в течение нескольких минут под проточной водой.Если симптомы сохраняются, обратитесь к врачу.
При проглатывании:
Если симптомы сохраняются, обратитесь к врачу.
Информация для врача
Наиболее важные симптомы и эффекты, как немедленные, так и замедленные
Нет данных
Указание на необходимость немедленной медицинской помощи и специального лечения
Нет данных


РАЗДЕЛ 5. МЕРЫ ПОЖАРОТУШЕНИЯ

Средства пожаротушения
Подходящие средства пожаротушения
Специальный порошок для сжигания металлов. Не используйте воду.
Неподходящие по соображениям безопасности средства пожаротушения
Вода
Особые опасности, исходящие от вещества или смеси
При пожаре могут выделяться следующие вещества:
Оксиды меди
Рекомендации для пожарных
Защитное снаряжение:
Никаких специальных мер не требуется .


РАЗДЕЛ 6. МЕРЫ ПРИ СЛУЧАЙНОМ ВЫБРОСЕ

Индивидуальные меры предосторожности, защитное снаряжение и чрезвычайные меры
Не требуется.
Меры предосторожности по охране окружающей среды:
Не допускайте попадания материала в окружающую среду без официального разрешения.
Не допускайте попадания продукта в канализацию, канализационные системы или другие водотоки.
Не допускайте проникновения материала в землю или почву.
Методы и материалы для локализации и очистки:
Собрать механически.
Предотвращение вторичных опасностей:
Никаких специальных мер не требуется.
Ссылка на другие разделы
См. Раздел 7 для информации о безопасном обращении
См. Раздел 8 для информации о средствах индивидуальной защиты.
Информацию об утилизации см. в Разделе 13.


РАЗДЕЛ 7. ОБРАЩЕНИЕ И ХРАНЕНИЕ

Обращение
Меры предосторожности для безопасного обращения
Держите контейнер плотно закрытым.
Хранить в прохладном, сухом месте в плотно закрытой таре.
Информация о защите от взрывов и пожаров:
Никаких специальных мер не требуется.
Условия безопасного хранения, включая любые несовместимости
Требования, которым должны соответствовать складские помещения и емкости:
Особых требований нет.
Информация о хранении на одном общем складе:
Нет данных
Дополнительная информация об условиях хранения:
Хранить контейнер плотно закрытым.
Хранить в прохладном, сухом месте в хорошо закрытых контейнерах.
Особое конечное использование
Данные отсутствуют


РАЗДЕЛ 8. КОНТРОЛЬ ВОЗДЕЙСТВИЯ/СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ

Дополнительная информация о конструкции технических систем:
Нет дополнительных данных; см. раздел 7.
Параметры контроля
Компоненты с предельными значениями, требующими контроля на рабочем месте: 7440-50-8 Медь (100,0%)
PEL (США) Длительное значение: 1* 0,1** мг/м 3 как Cu *пыль и туман **дым
REL (США) Длительное значение: 1* 0.1** мг/м 3 в виде Cu *пыли и туманы **дым
TLV (США) Длительное значение: 1* 0,2** мг/м 3 *пыль и туманы; **дым; как Cu
EL (Канада) Длительное значение: 1* 0,2** мг/м 3 *пыль и туман; **дым
EV (Канада) Длительное значение: 0,2* 1** мг/м 3 в виде меди, *дым;**пыль и туман
Дополнительная информация: Нет данных
Средства контроля воздействия
Средства индивидуальной защиты
Следуйте типичные защитные и гигиенические методы обращения с химическими веществами.
Поддерживайте эргономически подходящую рабочую среду.
Дыхательное оборудование: не требуется.
Защита рук: Не требуется.
Время проникновения материала перчаток (в минутах)
Данные отсутствуют
Защита глаз: Защитные очки
Защита тела: Защитная рабочая одежда.


РАЗДЕЛ 9. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Информация об основных физико-химических свойствах
Внешний вид:
Форма: Твердое вещество в различных формах
Цвет: Медного цвета
Запах: Без запаха
Порог запаха: Нет данных.
pH: н/д
Точка плавления/диапазон плавления: 1083 °C (1981 °F)
Точка/диапазон кипения: 2562 °C (4644 °F)
Температура сублимации/начало: Данные отсутствуют газ): нет данных.
Температура воспламенения: Данные отсутствуют
Температура разложения: Данные отсутствуют
Самовоспламенение: Данные отсутствуют.
Опасность взрыва: Данные отсутствуют.
Пределы взрываемости:
Нижний: Данные отсутствуют
Верхний: Данные отсутствуют
Давление паров при 20 °C (68 °F): 0 гПа
Плотность при 20 °C (68 °F): 8.94 г/см 3 (74,604 фунта/галлон)
Относительная плотность: Данные отсутствуют.
Плотность паров: N/A
Скорость испарения: N/A
Растворимость в воде (H 2 O): Нерастворим
Коэффициент распределения (н-октанол/вода): Данные отсутствуют.
Вязкость:
Динамическая: Н/Д
Кинематика: Н/Д
Другая информация
Нет данных


РАЗДЕЛ 10. СТАБИЛЬНОСТЬ И РЕАКЦИОННАЯ СПОСОБНОСТЬ

Реактивность
Нет данных
Химическая стабильность
Стабильность при рекомендуемом хранении
/ условия, которых следует избегать:
Разложение не происходит, если используется и хранится в соответствии со спецификациями.
Возможность опасных реакций
Опасные реакции не известны
Условия, которых следует избегать
Нет данных
Несовместимые материалы:
Нет данных
Опасные продукты разложения:
Оксиды меди


РАЗДЕЛ 11. ТОКСИКОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ

токсичность:
Реестр токсического воздействия химических веществ (RTECS) содержит данные об острой токсичности этого вещества.
Значения LD/LC50, важные для классификации:
Пероральная LD50 >5000 мг/кг (мышь)
Раздражение или коррозия кожи: Нет раздражающего действия.
Раздражение или коррозия глаз: Не оказывает раздражающего действия.
Сенсибилизация: Сенсибилизирующие эффекты неизвестны.
Мутагенность зародышевых клеток: Эффекты неизвестны.
Канцерогенность:
EPA-D: Канцерогенность для человека не классифицируется: неадекватные доказательства канцерогенности для людей и животных или данные отсутствуют.
Реестр токсических эффектов химических веществ (RTECS) содержит данные об онкогенности, и/или канцерогенности, и/или новообразованиях для этого вещества.
Репродуктивная токсичность:
Реестр токсического воздействия химических веществ (RTECS) содержит репродуктивные данные для этого вещества.
Специфическая токсичность для системы органов-мишеней — многократное воздействие: Эффекты неизвестны.
Специфическая токсичность для системы органов-мишеней — однократное воздействие: Эффекты неизвестны.
Опасность при вдыхании: Эффекты неизвестны.
От подострой до хронической токсичности: Эффекты неизвестны.
Дополнительная токсикологическая информация:
Насколько нам известно, острая и хроническая токсичность этого вещества полностью не известна.
Канцерогенные категории
OSHA-Ca (Управление по безопасности и гигиене труда)
Вещество не указано.


Раздел 12. Экологическая информация

Токсичность
Водная токсичность:
Нет данных Нет данных
Устойчивость и деградалимость
Нет данных Нет данных
Биоаккумулятивный потенциал
Нет данных Доступны
Мобильность в почве
Нет доступных данных
Дополнительная экологическая информация:
Не допускать выброс материала в окружающую среду без официального разрешения.
Не допускайте попадания неразбавленного продукта или больших количеств в грунтовые воды, водотоки или канализационные системы.
Избегайте попадания в окружающую среду.
Результаты оценки PBT и vPvB
PBT: н/д
vPvB: н/д
Прочие неблагоприятные воздействия
Нет данных


РАЗДЕЛ 13. СООБРАЖЕНИЯ ПО УТИЛИЗАЦИИ

Методы обработки отходов
Рекомендация
.
Неочищенная упаковка:
Рекомендация:
Утилизация должна производиться в соответствии с официальными правилами.


РАЗДЕЛ 14. ИНФОРМАЦИЯ О ТРАНСПОРТИРОВКЕ

Номер ООН
DOT, ADN, IMDG, IATA
N/A
Надлежащее транспортное наименование ООН
DOT, ADN, IMDG, IATA
N/A
Транспортный класс(ы) опасности 04 90 DOT, ADR, ADN, IMDG, IATA
Class
N/A
Группа упаковки
DOT, IMDG, IATA
N/A
Опасность для окружающей среды:
Загрязнитель морской среды (IMDG):
Да (PP)
Да (P)
Особые меры предосторожности для пользователя
Неприменимо
Транспортировка наливом в соответствии с Приложением II MARPOL73/78 и Кодексом IBC
Неприменимо
Транспортировка/Дополнительная информация:
DOT
Загрязнитель морской среды (DOT):


РАЗДЕЛ 15 .НОРМАТИВНАЯ ИНФОРМАЦИЯ

Правила/законодательные акты по безопасности, охране здоровья и окружающей среды, относящиеся к данному веществу или смеси
Национальные правила
Все компоненты этого продукта перечислены в Реестре химических веществ Агентства по охране окружающей среды США.
Все компоненты этого продукта перечислены в Канадском перечне веществ для внутреннего потребления (DSL).
Раздел 313 SARA (списки конкретных токсичных химических веществ)
7440-50-8 Медь
Предложение 65 штата Калифорния
Предложение 65 — Химические вещества, вызывающие рак
Вещество не указано в списке.
Prop 65 — Токсичность для развития
Вещество не указано.
Prop 65 — Токсичность для развития у женщин
Вещество не указано.
Prop 65 — Токсичность для развития, мужчины
Вещество не указано.
Информация об ограничении использования:
Только для использования технически квалифицированными лицами.
Другие нормы, ограничения и запретительные нормы
Вещество, вызывающее особую озабоченность (SVHC) в соответствии с Регламентом REACH (ЕС) № 1907/2006.
Вещество не указано.
Необходимо соблюдать условия ограничений согласно Статье 67 и Приложению XVII Регламента (ЕС) № 1907/2006 (REACH) для производства, размещения на рынке и использования.
Вещество не указано.
Приложение XIV Регламента REACH (требуется разрешение на использование)
Вещество не указано.
REACH — Предварительно зарегистрированные вещества
Вещество указано.
Оценка химической безопасности:
Оценка химической безопасности не проводилась


РАЗДЕЛ 16.ПРОЧАЯ ИНФОРМАЦИЯ

Паспорт безопасности в соответствии с Регламентом (ЕС) № 1907/2006 (REACH). Приведенная выше информация считается верной, но не претендует на полноту и должна использоваться только в качестве руководства. Информация в этом документе основана на современном уровне наших знаний и применима к продукту с учетом соответствующих мер предосторожности. Это не является гарантией свойств продукта. American Elements не несет ответственности за любой ущерб, возникший в результате обращения или контакта с вышеуказанным продуктом.Дополнительные условия продажи см. на обратной стороне счета-фактуры или упаковочного листа. АВТОРСКИЕ ПРАВА 1997-2022 АМЕРИКАНСКИЕ ЭЛЕМЕНТЫ. ПРЕДОСТАВЛЯЕТСЯ ЛИЦЕНЗИЯ НА ИЗГОТОВЛЕНИЕ НЕОГРАНИЧЕННОГО БУМАЖНОГО КОПИЯ ТОЛЬКО ДЛЯ ВНУТРЕННЕГО ИСПОЛЬЗОВАНИЯ.

Выявлена ​​структура травленых поперечных сечений медных проводов: а – Cu1…

Контекст 1

… стабилизирующей Cu. Оценены изменения содержания RRR и Cr в Cu при отжиге. Показано, что дополнительное падение RRR может быть вызвано диффузией кислорода из хромового покрытия, полученного гальванопокрытием.Определены оптимальные режимы диффузионного отжига хромированных нитей Nb 3 Sn для ИТЭР (Международный термоядерный экспериментальный реактор). В России организовано промышленное производство сверхпроводников на основе Nb 3 Sn для катушки тороидального возбуждения магнитной системы ИТЭР [1]. Пряди Nb 3 Sn для кабелей ИТЭР диаметром 0,82 мм содержат несколько тысяч нитей Nb 3 Sn в бронзовой матрице, окруженных барьером из Nb со вставками из Та и стабилизирующей медной оболочкой, объемная доля стабилизирующей меди по отношению к остальной части композиты 1.0 ± 0,1. Для уменьшения кооперативных потерь в этих кабелях жилы гальванически покрыты слоем хрома толщиной около 2 мкм. Токонесущая способность сверхпроводящих кабелей на основе Nb 3 Sn определяется рядом различных факторов, в том числе электропроводностью стабилизирующей Cu-оболочки, обеспечивающей стойкость кабеля к тепловым возмущениям. В качестве стабилизирующего материала обычно используется бескислородная медь высокой чистоты с RRR (R 273 /R 20 ) > 250. Однако хорошо известно, что после длительного отжига, направленного на твердофазное диффузионное формирование сверхпроводящей фазы Nb 3 Sn за счет взаимодействия между нитями Nb и бронзовой матрицей, значения RRR значительно уменьшаются и демонстрируют большой разброс [2].В работах [3-5] падение RRR при диффузионном отжиге Cr-покрытых Nb 3 Sn-звезд связано с диффузией Cr. Однако необходимо учитывать и другие факторы, влияющие на остаточное сопротивление стабилизирующей Cu. В работах [6, 7] исследовано влияние микроструктуры (дефекты кристаллической решетки, наличие примесей и др.) на электросопротивление меди, используемой для стабилизирующих оболочек сверхпроводников на основе Nb 3 Sn. Как показано в этих работах, существенный вклад в остаточное сопротивление вносят границы зерен, а мелкие выделения на основе примесных элементов повышают сопротивление границ зерен и стабилизируют дислокационную структуру.Увеличение электрического сопротивления за счет дислокаций определяется не только их плотностью, но и равномерностью их распределения. При неравномерном распределении дислокаций возможен большой разброс RRR, что может отрицательно сказаться на устойчивости композитной проволоки в целом. Как показано в [2], очень высокий разброс значений RRR (до ±15,9%) получен при испытаниях эталонных нитей, отожженных по одному и тому же стандартизированному режиму в шести странах-участницах ИТЭР (Китай, ЕС, Япония, Корея, Россия и США).Учитывая высокую важность соблюдения жестких требований ИТЭР по значениям RRR и большой разброс этого параметра, в настоящей работе исследуются и анализируются возможные причины снижения электропроводности нитей Nb 3 Sn при отжиге. В настоящей работе исследована высокочистая медь различных марок с различными значениями RRR после холодной вытяжки и отжига, а также стабилизирующая медь в хромированных многожильных сверхпроводниках на основе Nb 3 Sn, изготовленных по технологиям внутреннего олова и бронзы. [8].Структуру проволок изучали на продольных фольгах методами просвечивающей электронной микроскопии (ПЭМ) на микроскопе JEM-200CX и растровой электронной микроскопии (СЭМ) с микроанализом на поперечных срезах на микроскопе QUANTA-200 с прибором EDAX. Концентрацию Cr в стабилизирующих медных оболочках определяли методом масс-спектрометрии с индуктивно-связанной плазмой, для которого слой Cr удаляли в HCl, а Cu растворяли в HNO 3 , и определяли содержание Cr в этом растворе с относительной погрешностью 20 %.RRR определяли как отношение сопротивлений при 273 К и 20 К (R/R) с погрешностью не более 2%. Три образца высокочистой меди марки С10100 от разных производителей, Norddeutsche Affinerie (обозначается для удобства Cu1), Wieland (обозначается Cu2) и Luvata (Cu3), после холодного волочения до диаметра 0,82 мм (ε > 99). %) и дальнейший отжиг при 500 С, 30 мин в вакууме -5 10 мм рт.ст. Несмотря на одинаковый номинальный состав и обработку, параметр RRR оказался другим, равным 300 для Cu1, 420 для Cu2 и 510 для Cu3.Как показали исследования ПЭМ, высокочистая медь при холодном волочении деформируется по дислокационному о-механизму с очень малым числом двойников, а отжиг при 500 С, 30 мин не приводит к заметным изменениям дислокационной структуры исследованных образцов. СЭМ-исследования на микроскопе-микроанализаторе КВАНТ-200 выявили следующие особенности структуры в поперечных срезах после травления. Отчетливо видны отчетливые кристаллографические фигуры травления, форма и размеры которых отражают реальную структуру материала (рис.1). Наиболее дисперсная структура обнаружена в образце Cu1 (рис. 1а), и эта структура соответствует наибольшему остаточному сопротивлению и, следовательно, наименьшему параметру RRR (RRR = 300). В образцах с более высоким RRR вытравливаются значительно более крупные пакеты кристаллографических плоскостей с ярко выраженными ступеньками и участками, напоминающими двойники (рис. 1б,в). Что касается размеров зерен, то они составляют 20-100 мкм в Cu1, 30-75 мкм в Cu2 и 25-90 мкм в Cu3. Таким образом, большой разницы в размерах зерен и их разбросе нет, а это означает, что какие-то другие факторы, а не границы зерен, обусловливают разные значения остаточного сопротивления.Но поскольку структуры заметно различаются по своей дисперсности, можно сделать вывод, что большее количество внутренних границ в наиболее дисперсной структуре приводит к повышенному остаточному сопротивлению, поскольку эти границы могут служить дополнительными центрами рассеяния электронов. Микроанализ выявил некоторое количество кислорода во всех трех образцах Cu. Наименьшее его содержание обнаружено в Cu1, несколько большее – в Cu2, а наибольшее – в Cu3 с наибольшим параметром RRR 510. На первый взгляд, такой результат кажется неожиданным, так как можно было ожидать наименьшее содержание кислорода в лучших образец с точки зрения высокого RRR.Но присутствие кислорода в определенных пределах может привести к уменьшению остаточного сопротивления (и, следовательно, к росту RRR), если кислород соединяется с атомами примеси и таким образом очищает основной материал от примесей. Однако при повышенном содержании кислорода образуется большое количество мелкодисперсных осадков, которые, наоборот, могут вызывать рост остаточного сопротивления. В исследованных образцах Cu кислород распределяется равномерно, без скоплений с другими элементами, которые могли бы свидетельствовать об образовании оксидных частиц.Медь Luvata (Cu3) использовалась в качестве стабилизирующей оболочки для композитов, изготовленных по технологии внутреннего олова, и мы исследовали полученные проволоки на основе Nb 3 Sn диаметром 0,82 мм с покрытием Cr толщиной около 2 мкм. и стабилизирующую медную оболочку, составляющую около 50% в поперечном сечении, после 700°С, 36-часового отжига. RRR композитной проволоки оказался всего лишь 68, хотя в исходной Cu он достигал 510. Резкое падение RRR могло быть результатом значительного загрязнения стабилизирующей меди и модификации ее структуры.Действительно, структура свободной высокочистой меди (рис. 1в) и стабилизирующей оболочки Cu в композите (рис. 2а) заметно различаются. В композите стабилизирующая структура Cu дисперсная, без четких геометрических фигур и больше напоминает структуру Cu1 с наименьшим RRR (ср. рис. 2а и 1а). Размеры зерен в стабилизирующей Cu составляют 20-250 мкм, т.е. разброс размеров зерен значительно шире, чем в чистой меди. Различная структура Cu может быть связана с разными режимами отжига (500°С, 30 мин для чистого 0 Cu и 700°С, 36 ч для композита).Кроме того, структура может быть разной из-за разного напряженного состояния, так как при волочении композитной проволоки медная оболочка подвергается не только внешнему сжатию, но и сжатию со стороны собственно нити Nb 3 Sn. Поскольку все составляющие композита имеют заметно различающиеся механические свойства и разную деформируемость, реальная нагрузка на медную оболочку в композитной проволоке значительно выше, чем в свободной меди, даже при формально равных степенях деформации. Наряду с изменениями в структуре исследованиями СЭМ было выявлено загрязнение стабилизирующей оболочки хромом из покрытия.По данным микроанализа содержание Cr в медной оболочке этого композита составляет 0,32-0,66 ат. %, а на отдельных участках вблизи границы раздела Cr/Cu достигает 1,9 ат.%. Наряду с Cr в оболочке Cu присутствует также некоторое количество кислорода (3-8 ат. % O). В обработанных бронзой проводах в качестве стабилизирующей оболочки использовалась медь Norddeutsche Affinerie, то есть Cu1. В чистом виде он имел RRR = 300 после отжига 500 С, 30 мин. В исследуемых Nb-Sn-нитях стабилизирующая медная оболочка составляет около 50 % (рис.2б), а его RRR снизился лишь незначительно, до 211, после такого же отжига. Это уменьшение может быть связано с модификацией структуры и загрязнением при деформации и отжиге, как это было в случае композитов с внутренним оловом. Как показали исследования СЭМ, в структуре стабилизирующей Cu отсутствуют ярко выраженные фигуры травления, которые наблюдались в чистой Cu, и наблюдаются ямки травления, свидетельствующие о загрязнении. Проникновение Cr из покрытия и присутствие O также были обнаружены в Cu-оболочке.При отжиге этой проволоки при 700 С, 36 ч для диффузионного образования o-сверхпроводящего соединения Nb 3 Sn его RRR снизился до 100, а при отжиге 650 С, 200 ч — до 75. После длительного отжига Nb 3 Sn-нити при температурах выше температуры рекристаллизации размеров зерен меди в Cu-оболочке значительно увеличиваются, и их значительный разброс (30-200 мкм) …

электрические — Когда медные трубы являются землей?

Хорошо, теперь, когда мы видим ваше редактирование с изображением, мы знаем лучше.Этот провод является водной связью для электроснабжения. Он НЕ используется в качестве заземления, он соединяет металлическую систему водопровода в доме, так что в случае касания провода или компонента под напряжением водопроводной трубы автоматический выключатель сработает. Ты видишь, куда он идет? Он должен вернуться на главную сервисную панель.

Кроме того, медные трубы могут использоваться для заземления схемного оборудования только в некоторых очень специфических и строгих случаях. Я могу процитировать разделы кода, но достаточно сказать, что это в основном не имеет значения, поскольку так же легко запустить правильную цепь или заземлить панельную коробку.

Давным-давно, например, в 60-х и 70-х годах, было обычным делом заземлять некоторые контуры на трубы холодной воды, но во многих случаях это было признано небезопасным и в течение достаточно долгого времени не разрешалось. Нередко можно увидеть провода, прикрепленные к трубам в старых домах.

Старые бытовые электрические сушилки и кухонные приборы на 120/240 В могли быть «3-проводными», с использованием двух проводов и только нейтрали, заземление оборудования разрешалось не использовать, а нейтраль служила также землей.Это «3-проводное» разрешение было удалено из кода в 90-х годах.

Вот соответствующий раздел кода для осушителей и плит:

Из стандарта NEC

2011 г.

250.140 Каркасы кухонных плит и сушилок для белья

Каркасы электрических плит, духовок настенных, кухонных столешниц устройства, сушилки для белья и розетки или распределительные коробки, которые являются частью цепь для этих приборов должна быть подключена к оборудованию заземлитель в порядке, указанном в 250.134 или 250.138.

Исключение: Только для существующих ответвленных цепей, где заземляющий провод оборудования отсутствует в розетке или распределительная коробка, каркасы электрических плит, настенных духовок, встроенные кухонные блоки, сушилки для белья, а также розетки или соединения коробки, которые являются частью цепи для этих приборов, должны быть разрешается подключать к заземляющему проводнику, если все выполняются следующие условия.

(1) Цепь питания 120/240 вольт, однофазный, 3-проводной; или 208Y/120 вольт, полученный от 3-фазная, 4-проводная система, соединенная звездой.

(2) Заземляющий проводник не меньше, чем медь 10 AWG или алюминий 8 AWG.

(3) заземляющий проводник изолирован, или заземляющий проводник неизолированный и являющийся частью служебно-вводного кабеля типа SE и ответвленная цепь берет начало на сервисном оборудовании.

(4) Заземление контакты розеток, поставляемых как часть оборудования, заклеены к оборудованию.

Типы медных проводов

Медный провод обычно определяется как состоящий из одного проводника для электрических сигналов, в отличие от медного кабеля, в котором несколько медных проводов сгруппированы в общую оболочку.Многие типы медных проводов имеют общую функцию — проведение электричества с минимальным сопротивлением, что вызывает падение напряжения и рассеяние энергии в виде тепла. Фактически, медь использовалась с 1820-х годов, когда была разработана первая технология, требующая электропроводности. Никакой другой металл не может конкурировать с его проводимостью, плюс медный провод требует меньшей изоляции и может растягиваться более эффективно, чем другие металлы.

Среди распространенных типов медной проволоки:

  • Бериллиевая медная проволока
  • Проволока из медного сплава
  • Алюминиевая проволока с медным покрытием
  • Стальная проволока, плакированная медью
  • Медь Никелированная и никелированная медная проволока 
  • Провод из бескислородной меди с высокой проводимостью (OFHC)
  • Медная проволока, плакированная титаном

Подробнее об этом читайте ниже.

Бериллиевая медная проволока

Медная бериллиевая проволока

обладает преимуществом высокой прочности меди в сочетании с немагнитными и искробезопасными свойствами. Эта проволока из медного сплава может подвергаться старению или прокатке. Материал может образовывать пружины, замысловатые формы или сложные формы. Помимо гибкости, этот тип медной проволоки устойчив к коррозии. Этот тип проволоки отлично подходит для металлообработки, формовки и механической обработки.

Провод из медного сплава

Проволока из медного сплава

доступна в стандартном и индивидуальном форм-факторах.Спецификации производителя, которые следует учитывать при выборе наилучшего соответствия вашим потребностям, включают размер, прочность на растяжение (измеряется в фунтах на квадратный дюйм) и рабочую температуру. Варианты включают цирконий, бериллий, латунь, бронзу, титан и другие металлы. Выбор сплава обычно влияет на прочность, паяемость, долговечность и потребность в изоляции. Некоторые поставщики в этой области известны как производители сварочной проволоки из медных сплавов.

Алюминиевая проволока с медным покрытием

Этот тип провода имеет различные диаметры жил, изоляцию и толщину оболочки.Особенности включают в себя рабочие температуры, огнестойкость, масло- и озоностойкость. Омедненный алюминиевый провод (CCA) имеет алюминиевый сердечник и внешнюю медную оболочку, которая придает ему проводимость при уменьшенном весе. CCA дешевле, чем провод из чистой меди, но имеет более высокую прочность и большую электропроводность, чем провод из чистого алюминия.

Стальная проволока, плакированная медью

Стальная проволока с медным покрытием (CCS) сочетает в себе проводимость меди с высокой прочностью на растяжение стали. Этот тип провода используется в медицинских изделиях, источниках питания, оборудовании, двигателях, магнитных узлах, интеллектуальных приборах для измерения давления и температуры и т. д.Отожженная/мягкоотпущенная сталь с медным покрытием обычно имеет более низкую прочность на растяжение, чем твердотянутая альтернатива.

Медь Никелированная и никелированная медная проволока

Поставщики

медно-никелевых и никелированных медных проводов производят токопроводящие провода для аэрокосмической, оборонной, нефтехимической, ядерной и медицинской промышленности. Эти типы проволоки могут быть доступны в небольших количествах и нестандартных размерах или прокатных станах, рулонах, нарезанных по размеру, щелевых валках, агрегатных ситах, дисках, кругах, толстой тканой сетке или нестандартных переплетениях.

Это бескислородная медь до того, как из нее изготавливают провода.

Изображение предоставлено Sequoia Brass & Copper

Провод из бескислородной меди с высокой проводимостью (OFHC)

Бескислородная высокопроводящая медная проволока

(OHFC) представляет собой рафинированный высококачественный тип проволоки, расплавленный и отлитый в строго контролируемых условиях для снижения уровня кислорода до 0,001% ниже (стандарт ASTM). Предлагая более высокую электро- и теплопроводность, более высокую рекристаллизацию и температуру, а также более высокую обрабатываемость, OFHC используется в приложениях, требующих высокой точности и долговечности.Эта нелегированная медь высокой чистоты также обладает хорошей паяемостью и коррозионной стойкостью. Бескислородная проволока также устойчива к коррозии.

Медная проволока с титановым покрытием

Медная проволока, плакированная титаном (Ti), представляет собой легированную медную проволоку с отличной проводимостью в коррозионных процессах. Соединение титана и меди также обеспечивает проволоку, которая является пластичной для формовки и формовки и обладает отличной свариваемостью для соединения, покрытия и соединения. Медная проволока с титановым покрытием находит применение в опреснении, очистке воды, производстве электроэнергии, химической обработке и других применениях, которые сочетают высокие требования к токопроводящей способности с необходимостью высокой защиты от коррозии.

Другие виды изделий из медной проволоки

У Томаса также есть информация, необходимая для поиска поставщиков медных катушек, медных проволочных сеток, латунных, бронзовых и медных проволочных тканей.

Узнайте больше о медной проволоке

Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим нашим руководствам или посетите платформу поиска поставщиков Thomas, чтобы найти потенциальные источники поставок или просмотреть сведения о конкретных продуктах.

Добавить комментарий

Ваш адрес email не будет опубликован.