Подключение коллекторного двигателя переменного тока
Уважаемые посетители!!!
Мы вновь возвращаемся в мир занимательного — как электротехника, так как считаю, что эти знания нам просто всем необходимы в нашей повседневной жизни.
Подключение однофазного коллекторного двигателя — переменного тока
В этой теме необходимо понять, — как именно подключается однофазный коллекторный двигатель переменного тока, допустим, после его ремонта. Электрическая схема рис.1 дает нам представление о характере электрических соединений, то-есть, здесь мы можем заметить, что две обмотки статора электродвигателя в электрической цепи состоят в последовательном соединении, а две обмотки ротора электродвигателя относительно внешнего источника напряжения — соединены параллельно и электрическая цепь для данного примера замыкается на обмотках ротора электродвигателя.
рис.1
Кто разбирал из нас бытовые потребители электроэнергии как:
пылесос;
электродрель
и далее, со мной согласятся, что для электрической схемы \рис.1\ недостает еще одного элемента — конденсатора. Следовательно, к данному названию типа двигателя можно еще добавить такое название как конденсаторный электродвигатель. Если следовать логическому мышлению, то конденсатор в схеме электродвигателя в обязательном порядке соединяется с пусковой обмоткой статора, который служит для первоначального сдвига ротора. Соответственно мы пришли к выводу, что конденсатор непосредственно должен состоять в последовательном соединении с пусковой обмоткой. Для примера, приведена схема однофазного двигателя с рабочей и пусковой обмотками статора, где сопротивление на каждой обмотке будет принимать свое значение \рис.2\.
рис.2
В зависимости от типов асинхронных двигателей и их применения \рис.3\, существуют следующие схемы подключения к однофазной сети:
рис.3
а) омический сдвиг фаз, биффилярный способ намотки пусковой обмотки;
б) емкостной сдвиг фаз с пусковым конденсатором;
в) емкостной сдвиг фаз с пусковым и рабочим конденсатором;
г) емкостной сдвиг фаз с рабочим конденсатором.
В схемах указаны следующие обозначения:
А — рабочая обмотка;
В — пусковая обмотка;
Ср — рабочий конденсатор;
Сп — пусковой конденсатор.
Перед подключением коллекторного однофазного двигателя, необходимо определить:
- рабочую;
- пусковую
обмотки статора. Конденсатор, с его номинальными значениями по емкости и напряжению, и соответствующими данными для определенного типа двигателя, следует подключать к пусковой обмотке статора — последовательно. Сопротивление обмоток статора принимает следующие средние значения:
- рабочая обмотка 10-13 Ом;
- пусковая обмотка 30-35 Ом;
- общее сопротивление обмоток 40-45 Ом,
— для некоторых видов бытовой техники. Выполняя замеры сопротивлений на выводах проводов обмоток статора можно определить пусковую обмотку с ее средним значением. То-есть, сопротивление пусковой обмотки принимает среднее значение между рабочей обмоткой и общим сопротивлением двух обмоток — рабочей и пусковой.
Управление коллекторным двигателем — без реостата
Для управления коллекторным двигателем — без реостата, вполне подойдет пакетный переключатель, с помощью которого осуществляется переключение контактной группы — в переключателе \рис.4\.
рис.4
В этом примере, в зависимости от переключения позиции, будет изменяться направление вращения ротора электродвигателя, работа осуществляется с постоянной скоростью и оборотами двигателя, изменяется только полярность обмоток статора.
переключатель кулачковый пакетный
Для управления скоростью вращения ротора электродвигателя, можно воспользоваться симисторным регулятором скорости вращения. Данное электроустановочное изделие как и все остальные, подбирается с учетом номинальных значений по силе тока и напряжению, — учитывается подключаемая нагрузка \мощность потребителя электрической энергии\.
рис.5
Мощность потребителя, как наглядно видно из формулы \рис.5\, это произведение силы тока и напряжения. Для чего вообще необходимо проводить преварительные вычисления? Нагрузка, как известно нам, подключается через автомат защитного отключения. Чтобы установить и подключить автомат защитного отключения, принимается во внимание расчет по силе тока нагрузки \рис.6\.
рис.6
симисторный регулятор скорости вращения электродвигателя
В кратце, чтобы представить — что из себя представляет симисторный регулятор, опять-же нужно вспомнить основы электроники. Симистор, состоящий в схеме управления, выполняет функцию регулирующего элемента — для питания электродвигателя \рис.7\.
рис.7
На рисунке показаны выводы симистра:
При поступлении импульса на вход G — симистор открывается \рис.8\, то-есть, выполняет роль электронного ключа — для питания электродвигателя.
На фотоснимке показано изображение электронного модуля управления. Электронный модуль управления встречается в стиральных машинах-автомат, работающих в заданом, автоматическом режиме.
электронный модуль управления стиральной машины индезит
Подключение коллекторного двигателя — через реостат
рис.9
В этом схематическом изображении \рис.9\ показано подключение нагрузки к выводным клеммам генератора через реостат. Нагрузкой здесь является электрическая лампа накаливания. Реостат в электрической схеме состоит в последовательном соединении, нагрузка \лампочка\ соединена в схеме параллельно. Таким-же образом, вместо данной нагрузки можно подключить коллекторный двигатель, работающий от источников электрической энергии, таких как:
либо от внешнего источника энергии, то-есть, от электрической сети. При подключении коллекторного двигателя нужно принимать во внимание электрическую схему обмоток статора, тип двигателя, как допустим для следующей схемы \рис.10\.
рис.10
Электрическая схема представляет из себя схему универсального коллекторного двигателя, где двигатель может работать как от переменного так и от постоянного тока.
В свое время мною было изготовлено определенное количество электрических наждаков, электрические двигатели монтировались на платформу с последующим подключением, на вал ротора закреплялась насадка для установки наждачного круга, поэтому, в своей практике приходилось подключать различные типы электродвигателей.
наждачный круг
Приведенный пример \по электрическим наждакам\, — тема довольно-таки тоже занимательная и полезная для наших бытовых нужд.
Остается пожелать Вам успешного проведения ремонта для различных видов бытовой техники.
zapiski-elektrika.ru
Коллекторный двигатель: виды, принцип работы, схемы
В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.
Что такое коллекторный двигатель?
Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).
Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).
Виды КД
- Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
- Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.
Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:
- независимыми;
- параллельными;
- последовательными;
- смешанными.
Разобравшись с видами, рассмотрим каждый из них.
КД универсального типа
На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.
Конструкция универсального коллекторного двигателяОбозначения:
- А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
- В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
- С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
- D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
- Е – Вал якоря.
У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.
Схема универсального коллекторного двигателяУниверсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.
Особенности и область применения универсальных КД
Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:
- снижение КПД;
- повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.
Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.
Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.
КД с индуктором на постоянных магнитах
Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.
Конструкция коллекторного двигателя на постоянных магнитах и его схемаЭтот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.
Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.
КД на постоянных магнитах с игрушки времен СССРК числу преимуществ можно отнести следующие качества:
- высокий момент силы даже на низкой частоте оборотов;
- динамичность управления;
- низкая стоимость.
Основные недостатки:
- малая мощность;
- потеря магнитами своих свойств от перегрева или с течением времени.
Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.
Независимые и параллельные катушки возбуждения
Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).
Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбужденияОсобенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.
Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.
Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.
Положительные черты:
- отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
- высокий момент силы на низкой частоте вращения;
- простое и динамичное управление.
Минусы:
- стоимость выше, чем у устройств на постоянных магнитах;
- недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.
Последовательная катушка возбуждения
Схема такого КД представлена на рисунке ниже.
Схема КД с последовательным возбуждениемПоскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.
Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.
Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.
Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:
- высокую стоимость в сравнении с аналогами на постоянных магнитах;
- низкий уровень момента силы при высокой частоте оборотов;
- поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
- работа без нагрузки приводит к поломке КД.
Смешанные катушки возбуждения
Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.
Схема КД со смешанными катушками возбужденияКак правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.
При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.
Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.
Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:
- не устаревают магниты, за отсутствием таковых;
- малая вероятность выхода из строя при нештатных режимах работы;
- высокий момент силы на низкой частоте вращения;
- простое и динамичное управление.
www.asutpp.ru
Коллекторный двигатель переменного тока: схема подключения
Коллекторные двигатели переменного тока достаточно широко применяются как силовые агрегаты бытовой техники, ручного электроинструмента, электрооборудования автомобилей, систем автоматики. Схема подключения двигателя, а также его устройство напоминают схему и устройство электродвигателя постоянного тока с последовательным возбуждением.
Область применения таких моторов обусловлена их компактностью, малым весом, легкостью управления, сравнительно невысокой стоимостью. Наиболее востребованы в этом производственном сегменте электродвигатели малой мощности с высокой частотой вращения.
ОГЛАВЛЕНИЕ
- Особенности конструкции и принцип действия
- Упрощенная схема подключения
- Управление работой двигателя
- Преимущества и недостатки
- Типичные неисправности
Особенности конструкции и принцип действия
По сути, коллекторный двигатель представляет собой достаточно специфичное устройство, обладающее всеми достоинствами машины постоянного тока и, в силу этого, обладающее схожими характеристиками. Отличие этих двигателей состоит в том, что корпус статора мотора переменного тока для снижения потерь на вихревые токи выполняется из отдельных листов электротехнической стали. Обмотки возбуждения машины подключаются последовательно для оптимизации работы в бытовой сети 220в.
Могут быть как одно-, так и трехфазными; благодаря способности работать от постоянного и переменного тока называются ещё универсальными. Кроме статора и ротора конструкция включает щеточно-коллекторный механизм и тахогенератор. Вращение ротора в коллекторном электродвигателе возникает в результате взаимодействия тока якоря и магнитного потока обмотки возбуждения. Через щетки ток подается на коллектор, собранный из пластин трапецеидального сечения и является одним из узлов ротора, последовательно соединенного с обмотками статора.
В целом принцип работы коллекторного мотора можно наглядно продемонстрировать с помощью известного со школы опыта с вращением рамки, помещенной между полюсами магнитного поля. Если через рамку протекает ток, она начинает вращаться под действием динамических сил. Направление движения рамки не меняется при изменении направления движения тока в ней.
Последовательное подсоединение обмоток возбуждения дает большой максимальный момент, но появляются большие обороты холостого хода, способные привести к преждевременному выходу механизма из строя.
Упрощенная схема подключения
Типовая схема подключения может предусматривать до десяти выведенных контактов на контактной планке. Ток от фазы L протекает до одной из щеток, затем передается на коллектор и обмотку якоря, после чего проходит вторую щетку и перемычку на обмотки статора и выходит на нейтраль N. Такой способ подключения не предусматривает реверс двигателя вследствие того, что последовательное подсоединение обмоток ведет к одновременной замене полюсов магнитных полей и в результате момент всегда имеет одно направление.
Направление вращения в этом случае можно изменить, только поменяв местами выхода обмоток на контактной планке. Включение двигателя «напрямую» выполняется только с подсоединенными выводами статора и ротора (через щеточно-коллекторный механизм). Вывод половины обмотки используется для включения второй скорости. Следует помнить, что при таком подключении мотор работает на полную мощность с момента включения, поэтому эксплуатировать его можно не более 15 секунд.
Наши читатели рекомендуют! Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.загрузка…
Управление работой двигателя
На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.
В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:
- электронная схема подает сигнал на затвор симистора;
- затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя;
- тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления;
- в результате ротор вращается равномерно при любых нагрузках;
- реверс электродвигателя осуществляется с помощью реле R1 и R
Помимо симисторной существует фазоимпульсная тиристорная схема управления.
Преимущества и недостатки
К неоспоримым достоинствам таких машин следует отнести:
- компактные габариты;
- увеличенный пусковой момент; «универсальность» — работа на переменном и постоянном напряжении;
- быстрота и независимость от частоты сети;
- мягкая регулировка оборотов в большом диапазоне с помощью варьирования напряжения питания.
Недостатком этих двигателей принято считать использование щеточно-коллекторного перехода, который обуславливает:
- снижение долговечности механизма;
- искрение между и коллектором и щетками;
- повышенный уровень шумов;
- большое количество элементов коллектора.
Типичные неисправности
Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.
Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.
electricvdele.ru
Коллекторный электродвигатель переменного тока — устройство
В бытовой технике, ручном электроинструменте, автомобильном электрооборудовании и системах автоматики очень часто применяется коллекторный электродвигатель переменного тока, схема подключения которого, как и устройство схожи с двигателями постоянного возбуждения постоянного тока.
{ ArticleToC: enabled=yes }
Столь распространенное применение их объясняется компактностью, небольшим весом, невысокой стоимостью и простотой управления. В этом сегменте наиболее востребованы двигатели с высокой частотой и малой мощностью.
Принцип работ и конструктивные особенности
Устройство это достаточно специфичное, обладающее в силу схожести с машинами постоянного тока, похожими характеристиками и присущими им достоинствами.
Отличие от двигателей постоянного тока состоит в материале корпуса статора, изготовленном из листов электротехнической стали, благодаря чему удается добиться снижения потерь на вихревые токи.
Чтобы двигатель мог работать от обычной сети, т.е. 220 в, обмотки возбуждения соединяются последовательно.
Эти двигатели, называемые универсальными благодаря тому, что работают они от переменного и постоянного тока, бывают одно- и трехфазными.
Видео: Универсальный коллекторный двигатель
Из чего состоит конструкция?
Устройство электродвигателя переменного тока включает помимо ротора и статора:
- тахогенератор;
- щеточно-коллекторный механизм.
Ток якоря взаимодействует с магнитным потоком обмотки возбуждения, вызывая в коллекторном механизме вращение ротора. Ток подается через щетки на коллектор, являющийся узлом ротора и соединенным с обмоткой статора последовательно. Он собран из пластин, имеющих в сечении форму трапеции.
Продемонстрировать принцип работы такого двигателя можно с помощью хорошо известного со школьной программы опыта с вращающейся рамкой, которую поместили между разноименными полюсами магнитного поля. Она вращается под воздействием динамических сил, когда по ней протекает ток. При изменении направления тока, рамка не меняет направления вращения.
Примести к выходу из строя механизма могут высокие обороты холостого хода, вызванные максимальным моментом при последовательном подсоединении обмоток возбуждения.
Схема подключения (упрощенная)
Типовая схема подключения предусматривает вывод на контактную планку до десяти контактов. Протекающий по одной из щеток ток L поступает на коллектор и якорь, затем переходит на обмотки статора через вторую щетку и перемычку, выходя на нейтраль N.
Реверса мотора подобный способ подключения не предусматривает, поскольку подсоединение обмоток параллельное приводит к одновременной смене полюсов магнитных полей. В итоге, направление момента всегда одинаково.
Изменить направление вращения возможно, если поменять на контактной планке местами выхода обмоток. Напрямую двигатель включают, когда вывода ротора и статора подсоединены щеточно-коллекторный механизм. Для включения второй скорости используются выводы половины обмотки. Нельзя забывать, что с момента такого подключения мотор работает на максимальную мощность, поэтому время его эксплуатации не может превышать 15 секунд.
Видео: Подключение и регулировка оборотов двигателя от стиральной машины
Управление двигателем
На практике применяют различные способы регулирования работы двигателя. Это может быть электронная схема, где регулирующим элементом выступает симистор, который на мотор «пропускает» заданное напряжение. Работает он как мгновенно срабатывающий ключ, открываясь, когда на его затвор поступает управляющий импульс.
В основе принципа действия, реализованного в схемах с симистором, лежит двухполупериодное фазовое регулирование, где к импульсам, которые поступают на электрод, привязано напряжение, подаваемое на двигатель. При этом, частота, с которой вращается якорь, прямо пропорциональна напряжению, подаваемому на обмотки.
Упрощенно этот принцип можно описать такими пунктами:
- на затвор симистора подается сигнал от электронной схемы;
- затвор открывается, ток течет по обмоткам статора, вызывая вращение якоря мотора М;
- мгновенные величины частоты вращения преобразуются тахогенератором в электрические сигналы, формируя с импульсами управления обратную связь;
- как следствие, вращение ротора при любых нагрузках, остается равномерным;
- с помощью реле R и R1 осуществляется реверс мотора.
Другая схема – тиристорана фазоимпульсная.
Преимущества машин и недостатки
К достоинствам относят:
- небольшие размеры;
- универсальность, т.е. работу на напряжении постоянном и переменном;
- большой пусковой момент;
- независимость от сетевой частоты;
- быстроту;
- мягкую регулировку оборотом в широком диапазоне при варьировании напряжением питания.
Недостатки связаны и использованием щеточно-коллекторного перехода, влекущего:
- уменьшение срока службы механизма;
- возникновение между щетками и коллектором искры;
- высокий уровень шума;
- большое число коллекторных элементов.
Основные неисправности
Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.
Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.
Чтобы продлить срок службы двигателя, необходимо соблюдение двух условий – профессиональный изготовитель и грамотный пользователь, т.е. строгое соблюдение режима работы.
Видео: Коллекторный электрический двигатель
motocarrello.ru
Универсальный двигатель
Дмитрий Левкин
Универсальный двигатель — вращающийся электродвигатель, который может работать при питании от сети как постоянного, так и однофазного переменного тока [1].Конструкция универсального коллекторного электродвигателя не имеет принципиальных отличий от конструкции коллекторного электродвигателя постоянного тока с обмотками возбуждения, за исключением того, что вся магнитная система (и статор, и ротор) выполняется шихтованной и обмотка возбуждения делается секционированной. Шихтованная конструкция и статора, и ротора обусловлена тем, что при работе на переменном токе их пронизывают переменные магнитные потоки, вызывая значительные магнитные потери.
Универсальный двигатель
Секционирование обмотки возбуждения вызвано необходимостью изменения числа витков обмотки возбуждения с целью сближения рабочих характеристик при работе электродвигателя от сетей постоянного и переменного тока [2].
Схема универсального коллекторного двигателя
Универсальный коллекторный электродвигатель может быть выполнен как с последовательным, так и с параллельным и независимым возбуждением.
В настоящее время универсальные коллекторные электродвигатели выполняют только с последовательным возбуждением.
Возможность работы универсального двигателя от сети переменного тока объясняется тем, что при изменении полярности подводимого напряжения изменяются направления токов в обмотке якоря и в обмотке возбуждения. При этом изменение полярности полюсов статора практически совпадает с изменением направления тока в обмотке якоря. В итоге направление электромагнитного вращающего момента не изменяется:
,
- где M — электромагнитный момент, Н∙м,
- – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
- – ток в обмотке якоря, А,
- Ф — основной магнитный поток, Вб.
В качестве универсального используют двигатель последовательного возбуждения, у которого ток якоря является и током возбуждения, что обеспечивает почти одновременное изменение направления тока в обмотке якоря Iа и магнитного потока возбуждения Ф при переходе от положительного полупериода переменного напряжения сети к отрицательному.
Если двигатель подключить к сети синусоидального переменного тока, то ток якоря Ia и магнитный поток Ф будут изменяться по синусоидальному закону:
,
- где i — ток, А,
- – амплитуда тока, А,
- – частота, рад/c.
,
- где – наибольшее значение магнитного потока, Вб,
- – угол сдвига фаз между током возбуждения и магнитным потоком, обусловленный магнитными потерями в двигателе, рад.
Отсюда получим формулу электромагнитного момента коллекторного двигателя последовательного возбуждения, включенного в сеть синусоидального переменного тока, Нм:
.
После преобразования:
.
Первая часть выражения представляет собой постоянную составляющую электромагнитного момента Mпост, а вторая часть — переменную составляющую этого момента Мпер, изменяющуюся во времени с частотой, равной удвоенной частоте напряжения питания.
Таким образом, результирующий электромагнитный момент при работе двигателя от сети переменного тока пульсирует. Пульсации электромагнитного момента практически не нарушают работу двигателя. Объясняется это тем, что при значительной частоте пульсаций электромагнитного момента () и большом моменте инерции якоря вращение последнего оказывается равномерным.
Коэффициент полезного действия универсального двигателя при его работе от сети переменного тока более низкий, чем при его работе от сети постоянного тока. Другой недостаток универсального двигателя — тяжелые условия коммутации, вызывающие интенсивное искрение на коллекторе при включении двигателя в сеть переменного тока. Этот недостаток объясняется наличием трансформаторной связи между обмотками возбуждения и якоря, что ведет к наведению в коммутируемых секциях трансформаторной ЭДС, ухудшающей процесс коммутации в двигателе.
Наличие щеточно-коллекторного узла является причиной ряда недостатков универсальных коллекторных двигателей, особенно при их работе на переменном токе (искрение на коллекторе, радиопомехи, повышенный шум, невысокая надежность). Однако эти двигатели по сравнению с асинхронными и синхронными при частоте питающего напряжения f = 50 Гц позволяют получать частоту вращения до 10 000 об/мин и более (наибольшая синхронная частота вращения при f = 50 Гц равна 3000 об/мин) [3].
Благодаря тому, что универсальный двигатель может иметь высокую скорость вращения при работе от однофазной сети переменного тока без использования дополнительных преобразовательных устройств, он получил широкое применение в таких домашних приборах как пылесосы, блендеры, фены и др. Так же универсальный электродвигатель широко используется в таких инструментах, как дрели и шуруповерты.
Благодаря тому, что скорость вращения универсального двигателя легко регулируется изменением величины питающего напряжения ранее он широко использовался в стиральных машинах. Сейчас благодаря развитию преобразовательной техники более широкое использование получают бесщеточные электродвигатели (СДПМ, АДКР) скорость вращения которых регулируется изменением частоты напряжения питания.
Смотрите также
engineering-solutions.ru
Как работает коллекторный двигатель со щеточным механизмом в бытовой технике
Пылесос, кофемолка, дрель, перфоратор, триммер — далеко не полный перечень оборудования, в котором используется преобразование электрической энергии в механическую для работы бытовых устройств.
Они содержат сложные технические узлы, требуют умелого обращения, периодического осмотра, правильного обслуживания. При небрежной работе возникают различные поломки.
Материал статьи представляет советы домашнему мастеру, работающему с электрическими инструментами или планирующему самостоятельный ремонт электродвигателя с щеточным механизмом и коллектором. Текст наглядно дополняется схемами, картинками и видеороликом.
Предоставленная информация собрана с целью привлечь внимание пользователей к правилам эксплуатации бытовых приборов с коллекторным двигателем. Она поможет осознанно фиксировать возникающие дефекты работающей схемы, оперативно устранять их.
Содержание статьи
Компоновка и принцип работы
Подвижная часть коллекторного двигателя, как и любого другого, механически сбалансирована и закреплена в подшипниках вращения, вмонтированных в неподвижную станину.
Стационарный статор и вращающийся ротор имеют собственные обмотки из изолированного провода. По ним протекает электрический ток, создающий магнитные поля со своими полюсами: северным N и южным S.
При взаимодействии этих двух электромагнитных полей создается вращение ротора.
Поскольку к обеим обмоткам необходимо постоянно подводить напряжение, а ротор вращается, то для него смонтировано специальное устройство: коллектор с щеточным механизмом.
Электрическая схема
Для практических работ удобно пользоваться двумя видами ее представления:
- упрощенным;
- более подробным.
Упрощенное отображение
Способ позволяет очень просто представить подключение всех обмоток двигателя к схеме электрической сети.
Выключатель разрывает оба потенциала фазы и нуля или один из них. Через щетки с коллектором создается цепь тока по обмоткам ротора.
Принципиальная схема
В зависимости от конструктивных особенностей обмотки статора и ротора могут иметь дополнительные отводы для питания различных устройств управления и автоматики коллекторного двигателя или обходиться без них.
Термозащита исключает перегревание изоляции обмоток двигателя. Она снимает напряжение питания при срабатывании датчика, останавливая вращение ротора и исполнительного механизма.
Тахогенератор позволяет судить о скорости вращения ротора. У отдельных двигателей его заменяют датчиком Холла. Для передачи сигналов к этим устройствам тоже используются контакты коллекторных пластин.
Проблемные места конструкции
Чаще всего неисправности могут возникнуть в:
- подшипниках:
- щеточном коллекторном узле;
- слое изоляции обмоток и проводов.
Подшипники
Их расположение выполняется по краям ротора с таким условием, чтобы максимально передавать осевую нагрузку крутящего момента.
У обычного бытового инструмента они могут повреждаться по двум основным причинам:
- от неправильного приложения нагрузки:
- в результате загрязнения.
Направления приложенных усилий
Подшипники бытового электроинструмента, как правило, не предназначены для восприятия боковых нагрузок. От частого их приложения, например, когда при работе дрелью нагружают не конец сверла, а прорезают щелевые отверстия его боком, на подшипниковый механизм передаются биения вала, создающие дополнительные люфты шариков в обоймах.
Работа в загрязненной среде
Коллекторный двигатель имеет воздушную систему охлаждения. Крыльчатка, надетая на ротор, забирает воздух через специальные щели в кожухе двигателя и прогоняет его по всему корпусу для отвода излишнего тепла от нагревающихся обмоток. Теплые потоки выбрасываются через специальные отверстия.
Если в помещении создана пыльная среда, то она будет засасываться внутрь корпуса и проникнет на подшипники и коллекторно-щеточный механизм. Возникнет абразивное воздействие на соприкасающихся при вращении частях, их преждевременный износ, а также нарушение электрической проводимости на контактах щеток.
Использование коллекторного двигателя не по назначению, например, сбор потока строительной пыли бытовым пылесосом вместо строительного, наиболее частая причина его поломки.
Отчего искрят щетки
Конструктивные особенности
При работе двигателя происходит постоянное трение щеток о контактные пластины коллектора, что требует периодического осмотра.
На рабочих поверхностях медных площадок появляется незначительный слой угольной пыли, как показано на фотографии. Это связано с расходом материала и износом щеток.
Этот процесс идет всегда при работе коллекторного двигателя. Даже при нормальном скольжении щетки создается незначительный разрыв цепи электрического тока. А это всегда связано с искрообразованием из-за возникновения переходных процессов и появлением микроскопических дуг. К тому же обмотки обладают высоким индуктивным сопротивлением.
Поэтому полностью исправный щеточный механизм при номинальной работе искрит, что не заметно взглядом, но ощущают чувствительные электронные приборы: телевизоры, компьютеры и другая техника. В схему их питания всегда устанавливают помехоподавляющие фильтры. Примером служит приведенная на сайте электрическая схема микроволновой печи с выделенным фрагментом зеленого цвета.
Износ материала щеток
Прижимаемая к коллекторной пластине токоведущая часть выполнена из угля. Ее объём изнашивается, а длина уменьшается. При этом ослабляется усилие нажима, создаваемое расправляемой пружиной.
Этот процесс может учитывается или не приниматься во внимание в разных конструкциях коллекторных двигателей.
Раритетные образцы
На старом двигателе выпуска 1960 года, приведенном в качестве примера, сжатие пружины осуществляется усилием завинчивания диэлектрической крышки.
Процесс установки щетки показан ниже.
Двигатель пылесоса
Описанная в статье об изготовлении самодельного триммера конструкция щеточного механизма имеет винт фиксации корпуса щетки.
Его установка показана на очередной фотографии. Обратите внимание, что сама щетка неоднократно стачивалась в процессе длительной работы и заменялась выточенным из угольного электрода батарейки по форме предыдущей.
При самостоятельном изготовлении щеток обращайте внимание на плотность ее входа в гнездо и перпендикулярное положение к оси вала. Если она будет меньшего размера, то при работе возникнет перекос. Он приведет к излишнему искрению и снижению ресурса двигателя.
Поэтому желательно использовать заводские щетки от производителя.
Существуют и другие технические решения этого вопроса.
Как проверить степень износа щетки
Основной метод связан с визуальным осмотром. В интернете можно встретить советы, рекомендующие прижать при работе двигателя щетку отверткой и оценить изменение оборотов ротора.
Это опасная операция, выполнять которую может только обученный и опытный персонал потому, что:
- необходимо пользоваться защитными средствами: работа выполняется под напряжением;
- существует вероятность создания короткого замыкания, ибо проверять придется обе щетки по очереди или одновременно и использовать отвертки с изолированными стержнями и наконечниками.
Если внешний осмотр показал, что длина щетки сильно уменьшена или рабочая поверхность имеет сколы, то ее необходимо просто заменить.
Загрязненный коллектор
Образование излишнего слоя угольной пыли с хорошими токопроводящими свойствами на пластинах может стать причиной их замыкания. Необходимо ее удалять не только с внешней поверхности, но и из промежутков между ними.
Графитовую пыль можно стереть слегка смоченной в спирте или бензине мягкой ветошью или убрать тонкой деревянной палочкой.
Когда коллекторные пластины потеряли первоначальную форму и стали с выемками, то их восстанавливают наждачной шкуркой с самым мелким зерном на токарных станках. Это сложная операция, требующая специального оборудования, но она способна продлить ресурс коллекторного двигателя.
Межвитковые замыкания в обмотках
Их образование на статоре или роторе резко снижает индуктивное сопротивление, ведет к появлению дополнительных искр между различными секциями коллектора и щеток. Возникает дополнительный перегрев.
Обмотка ротора
Поврежденную секцию в отдельных случаях можно наблюдать визуально по изменению цвета. Для выполнения электрических замеров потребуется точный омметр. Технологию проверки демонстрирует видео владельца altevaa TV “Проверка якоря коллекторного двигателя”.
Ремонт поврежденной обмотки ротора — операция сложная. Иногда проще купить новый.
Обмотка статора
Неисправность можно выявить замером активной составляющей электрического сопротивления по мостовой схеме у каждой полуобмотки. Но это тоже довольно сложно.
Пробой диэлектрического слоя изоляции
Кратко коснемся причин образования дефектов и защитных устройств, которыми необходимо пользоваться.
Как возникают неисправности
Медные провода жил всех обмоток покрыты слоем лака, который может повреждаться от:
- неосторожно приложенных механических нагрузок;
- при повышенной температуре.
От этих же факторов возникают дефекты изоляции питающих проводов с полихлорвиниловым покрытием.
В результате этих воздействий появляются следующие неисправности электрической схемы:
- межвитковое замыкание, создающее дополнительный путь для протекания тока утечек, который значительно снижает рабочие характеристики двигателя;
- короткое замыкание, способное выжечь провода.
Защитные устройства
Термореле
Встроенная во многие коллекторные двигатели функция защиты от перегрева работает автоматически. Когда оборудование отключается от его частой работы, то необходимо искать причину завышения температуры. К сожалению, часть пользователей старается заблокировать термореле. Это приводит к поломке с трудно восстанавливаемым ремонтом.
Автоматический выключатель
Ликвидация короткого замыкания и перегруза внутри электрической схемы двигателя возложена на бытовой автомат, питающий силовую розетку. Он устанавливается в квартирном щитке и по своим техническим характеристикам должен соответствовать рабочему и аварийному режиму коллекторного двигателя.
Без защиты налаженным автоматическим выключателем пользоваться инструментом с коллекторным двигателем опасно для жизни.
УЗО
Устройство защитного отключения предназначено для защиты работающего персонала от воздействия токов утечек, проникающих на открытые металлические или случайно контактирующие токопроводящие части корпуса.
УЗО предотвращает стекание потенциала фазы через тело человека на землю. Оно тоже устанавливается в квартирном щитке.
Для закрепления материала рекомендуем посмотреть ролик владельца slavnatik “Почему искрит болгарка”.
Напоминаем, что сейчас вам удобно задать вопросы в комментариях и поделиться статьей с друзьями в соц сетях.
Полезные товарыhousediz.ru
Коллекторный двигатель: устройство и подключение
Благодаря своим компактным размерам, коллекторный двигатель получил широкое распространение в конструкциях ручного электроинструмента. Он успешно применяется взамен конденсаторного однофазного асинхронного двигателя в стиральных машинах. Массовое применение коллекторных двигателей обусловлено их высокой мощностью, простотой в управлении и обслуживании. Независимо от внешних различий и типов креплений, все они имеют одинаковый принцип действия.
Устройство и принцип работы
Прежде всего, это однофазный электродвигатель, где осуществляется последовательное возбуждение обмоток. Для его работы может использоваться переменный или постоянный ток. По этой причине, коллекторный электродвигатель считается универсальным.
Большинство таких электродвигателей имеют в своей конструкции основные элементы в виде статора вместе с обмоткой возбуждения, а также ротора и двух щеток в качестве скользящего контакта. Большая роль во всей конструкции отводится тахогенератору. Его магнитный ротор закрепляется в торце роторного вала, а фиксация катушки осуществляется с помощью стопорного кольца или крышки.
Все конструктивные элементы электродвигателя объединены в общей конструкции. Их соединяют две алюминиевые крышки, непосредственно образующие корпус двигателя. Для вывода контактов, присутствующих во всех элементах используется клеммная колодка, позволяющая легко включать их в общую электрическую схему. Для работы ременной передачи на роторный вал запрессовывается шкив.
Подключение и управление
В основе работы данного вида двигателей лежат взаимодействующие магнитные поля, присутствующие в статоре и роторе, при прохождении через них электрического тока. Коллекторный двигатель имеет последовательную схему, по которой подключаются обмотки. Контактная колодка позволяет задействовать до десяти контактов, увеличивая количество вариантов подключения.
Простейшее подключение можно выполнить, зная лишь расположение выводов в статоре и щетках. При нормальном подключении устанавливаются средства электрической защиты и устройства, позволяющие ограничивать ток. Поэтому, прямое подключение от сети должно производиться не более чем на 15 секунд.
Управление коллекторным двигателем осуществляется с помощью специальной электронной схемы. В этой схеме всю силовую регулировку выполняет симистор, подающий напряжение на двигатель в необходимом количестве и подключаемый последовательно с ним.
electric-220.ru