Меню Закрыть

Подбор автоматического выключателя: Страница не найдена — Я

Содержание

Выбор автоматического выключателя по параметрам сети, подключенной нагрузке (мощности), по току, по сечению провода. Конструктивные элементы и особенности эксплуатации автоматов.

Старая версия статьи здесь

Автоматические выключатели одновременно выполняют функции защиты и управления: защищают кабели, провода, электрические сети и потребителей от перегрузки и короткого замыкания (сверхтоков короткого замыкания), а также обеспечивают нормальный режим протекания электротока в цепи и осуществляют управление участками электроцепей.

Автоматические выключатели выполняют одновременно функции защиты и управления, бывают однополюсные, двухполюсные, трехполюсные и четырехполюсные.

Автоматы имеют защитные (спусковые) устройства двух типов: тепловое реле с выдержкой времени для защиты от перегрузки и электромагнитное реле для защиты от короткого замыкания.

Основные конструктивные узлы автоматических выключателей: главная контактная система, дугогасительная система, привод, расцепляющее устройство, расцепители и вспомогательные контакты.

Расцепители представляют собой реле прямого действия, служащее для отключения автоматического выключателя (без выдержки времени или с выдержкой) через механизм свободного расцепления, который в свою очередь состоит из рычагов, защелок, коромысел и отключающих пружин.

 


Только правильно выбранный автоматический выключатель сможет защитить Вас и сработает в случае аварии или при опасной нагрузке на вашу электропроводку. Неверный выбор может привести к пожару или поражению электрическим током.

Не рекомендуется применять «автомат» с видимыми повреждениями корпуса, а также устанавливать автоматические выключатели с завышенным номинальным током срабатывания. Нужно выбирать автоматический выключатель строго под параметры вашей электропроводки и потребителей, только известных производителей и желательно в специализированных магазинах.

Выбираются автоматические выключатели по номинальному току, напряжению и по условиям эксплуатации (исходя из типа исполнения). Если необходимо выбрать автомат для подключения известных нагрузок необходимо рассчитать ток. Автоматический выключатель также должен отключить напряжение при коротком замыкании.

Характеристики срабатывания (отключения) и эксплуатации установлены в европейских стандартах на автоматические выключатели: DIN VDE 0641 часть 11/8.92, EN 60 898, IEC 898 (DIN – Немецкий промышленный стандарт, VDE – Технические правила Общества немецких электриков, EN – Европейский стандарт, IEC – Международная электротехническая комиссия) и в российском стандарте ГОСТ Р 50345-99.

Согласно данным стандартам защитные устройства могут быть трех характеристик срабатывания:

    • Автоматический выключатель с характеристикой срабатывания B рекомендуется применять преимущественно для защиты оборудования, кабелей и цепей в жилых домах (как правило, цепи освещения и розеток)
    • Автоматический выключатель с характеристикой срабатывания C рекомендуется применять  для защиты оборудования, кабелей и цепей в жилых домах (цепи освещения и розеток), а также для защиты цепей с потребителями, обладающими большим пусковым током (группы ламп, электродвигатели и т. д.)
    • Автоматические выключатели с характеристикой срабатывания D преимущественно применяются для защиты кабелей и цепей с потребителями с очень большим пусковым током (сварочные трансформаторы, электродвигатели и т.д.)

Стоит отметить, что подавляющее большинство автоматов на российском рынке предлагается с характеристикой С, с характеристикой B продаются как правило автоматы на малые токи, остальные поставляются в основном под заказ.

 


Согласно стандарту DIN VDE 0100 часть 430/11.91 и его приложений (для устройств защиты кабелей и электрических цепей от перегрузки), защита от чрезмерного нагрева (тепловая защита) в случае перегрузки обеспечивается, если выполняются следующие условия:

    • Потребляемый ток цепи должен быть меньше или равным номинальному току автоматического выключателя, который в свою очередь должен быть не больше, чем максимально допустимая нагрузка электрической цепи или кабеля (Ib<=In<=Iz)
    • Номинальный ток срабатывания автоматического выключателя (для защиты от перегрузки по току) должен быть примерно в 1,5 раза меньше, чем максимально допустимая нагрузка электрической цепи или кабеля (In<=1,45*Iz)

где Ib – потребляемый ток цепи, нагрузка
Iz – допустимая нагрузка электрической цепи или кабеля
In – номинальный или заданный ток устройств защиты от чрезмерного тока

Определить максимальный ток, который выдерживает проводка можно с помощью программы по выбору сечения провода по нагреву и потерям напряжения или по таблицам ПУЭ (Правил устройства электроустановок).

 

 
Характеристики срабатывания автоматических выключателей B и C согласно DIN VDE 0641 и D согласно IEC 947-2

 

Параметры срабатывания линейных защитных автоматов согласно DIN VDE 0641 и IEC 60 898

 

 Характеристика срабатывания Тепловое реле Электромагнитное реле
 Малый испытательный ток Большой испытательный ток Время срабатывания Удерживание СрабатываниеВремя срабатывания
 B 1,13*In  > 1час 3*In > 0,1 с
  1,45*In < 1час  5*In< 0,1 с
 C 1,13*In  > 1час 5*In > 0,1 с
  1,45*In < 1час  10*In< 0,1 с
 D 1,13*In  > 1час 10*In > 0,1 с
  1,45*In < 1час  20*In< 0,1 с

 

То есть при перегрузке до 13% номинального тока, автоматический выключатель должен отключиться не ранее, чем через час (т. е. выдерживать перегрузку 13% минимум в течение часа), а при перегрузке до 45%, тепловое реле должно отключить «автомат» в течение часа.

Трехкратную перегрузку автоматический выключатель с характеристикой B должен как минимум выдерживать 0,1 секунду, а при пятикратной перегрузке встроенное электромагнитное реле должно отключить автоматический выключатель менее чем за 0,1 секунду.

Из всего этого видно, что номинальный ток выбранного Вами автоматического выключателя, как минимум, не должен превышать допустимых токовых нагрузок для Вашей электропроводки, поэтому, приобретая автоматические выключатели, будьте внимательны с выбором тока. Если Вам продавец советует выбрать автоматический выключатель с током не менее 25А, чтобы при включенном холодильнике, обогревателе, стиральной машине и т.п. его не выбивало, то помните, что в большинстве квартир проводка выполнена из алюминия сечением 2.5 мм2, а такой провод выдерживает максимум 24А. В этом случае единственным разумным решением будет не включать одновременно, например, микроволновую печь и электрочайник или стиральную машину, а не заменять автомат 16А на 25А.

Не забывайте, что автоматический выключатель должен выполнять свое основное предназначение — защищать Вашу сеть от перегрузок.

Аналогичным образом подбирается и номинальный ток для дифференциального автомата (так как он объединяет в себе УЗО и автоматический выключатель) — выбор дифференциального автоматического выключателя.

При использовании в цепи постоянного тока характеристики срабатывания теплового расцепителя остаются теми же, что и в сетях переменного напряжения. А характеристики максимального испытательного тока электромагнитного расцепителя изменятся.

Значения максимального испытательного тока электромагнитного расцепителя.

 

 

 

Характеристика выключения

B

C

D

АС/50 Гц (переменный ток)

DC (постоянный ток)

АС/50 Гц (переменный ток)

DC (постоянный ток)

АС/50 Гц (переменный ток)

Минимальный испытательный ток

3,0*In

3,0*In

5*In

5*In

10*In

Максимальный испытательный ток

5,0*In

7,5*In

10*In

15*In

20*In


Допустимая нагрузка на автоматические выключатели
, установленные в ряд один за другим

Поправочный коэффициент (K) в случае взаимного теплового влияния автоматических выключателей, установленных рядом друг с другом, при расчетной нагрузке.

 Число автоматических выключателей Коэффициент К
 1 1
 2…3 0,95
 4…5 0,9
 ≥6 0,85


Влияние окружающей температуры на тепловое срабатывание автоматического выключателя (приведенные в столбце 30°С токи соответствуют номинальным токам автоматического выключателя, так как при этой температуре задается режим срабатывания). В таблице приведены уточненные значения расчетного тока в зависимости от окружающей температуры.

 

In (А)30°С35°С40°С45°С50°С55°С60°С
0,50,50,470,450,40,38
110,950,90,80,70,60,5
221,91,71,61,51,41,3
332,82,52,42,32,11,9
443,73,53,332,82,5
665,65,354,64,23,8
10109,48,887,576,4
1616151413121110
202018,517,516,5151413
252523,52220,51917,516
3232302826242220
404037,53533302825
50504744413833532
6363595551484440

 

См. каталог:
Модульные устройства коммутации и управления HAGER
Автоматические выключатели, УЗО и дифф. автоматы Hager
Линейные защитные автоматы — для защиты кабелей и проводов
Автоматические выключатели Hager HMF на токи 80-125А
Автоматические выключатели SASSIN
Автоматы дифференциальные SASSIN серии C45L, C45N

Статьи по теме:

Выбор устройства защитного отключения (УЗО)
Выбор дифференциального автомата
Проведение электромонтажных работ


Внимание! При полном или частичном копировании материалов данной статьи или другой информации с сайта www.electromirbel.ru, обязательно наличиеактивной ссылки, ведущей на главную страницу www.electromirbel.ru или на страницу с копируемым материалом. Гиперссылка не должна быть запрещена к индексации поисковыми системами (например, с помощью тегов noindex, nofollow и т.д.)!!!


© ООО «Электромир», 2010.

Таблица для выбора автоматических выключателей для однофазной и трехфазной сети

Расчет автоматического выключателя.

Автоматический выключатель можно рассчитывать двумя методами: по силе тока потребителей или по сечению используемой проводки.

Рассмотрим первый способ — расчет автомата по силе тока.

Первым шагом, нужно подсчитать общую мощность, которую нужно повесить на автомат. Для этого суммируем мощность каждого электроприбора. Например, нужно рассчитать автомат на жилую комнату в квартире. В комнате находится компьютер (300 Вт), телевизор (50 Вт), обогреватель (2000 Вт), 3 лампочки (180 Вт) и еще периодически будет включаться пылесос (1500 Вт). Плюсуем все эти мощности и получаем 4030 Вт.

Вторым шагом рассчитываем силу тока по формуле I=P/U P — общая мощность U — напряжение в сети

Рассчитываем I=4030/220=18,31 А

Выбираем автомат, округляя значение силы тока в большую сторону. В нашем расчете это автоматический выключатель на 20 А.  

Рассмотрим второй метод — подбор автомата по сечению проводки.

Этот метод намного проще предыдущего, так как не нужно производить никаких расчетов, а значения силы тока брать из таблицы (ПУЭ табл.1.3.4 и 1.3.5.)

Допустимый длительный ток для проводов и кабелей с медными жилами
Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
Допустимый длительный ток для проводов и кабелей с алюминиевыми жилами
Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38

Допустим, у нас двухжильный медный провод с сечением 4 мм. кв. уложенный в стену, смотрим по первой таблице силу тока, она равна 32 А. Но при выборе автоматического выключателя эту силу тока нужно уменьшать до ближайшего нижнего значения, для того чтобы провод не работал на пределе. Получается, что нам нужен автомат на 25 А.

Так же нужно помнить, если нужен автомат на розеточную группу, то брать выше 16 А нет смысла, так как розетки больше 16 А выдержать не могут, они просто начинают гореть. На освещение самый оптимальный на 10 А.

  • Предыдущая запись: Установка встраиваемой раковины в мраморную столешницу.
  • Следующая запись: Замена вводного переключателя на двухполюсный автомат.

Плюсы и минусы

Преимуществом дифавтомата в его компактности, многофункциональности, 100% защита цепи от внезапных перегрузок или иной опасности. Ну а главный «козырь» — стоимость, которая ниже, нежели суммарная стоимость УЗО и выключателя автоматического типа.

Если учитывать единичный случай, то разница не слишком ощутима, но при покупке на весь дом выгода существенная. Впрочем, многое зависит от марки изделия. Монтаж занимает мало времени, на рейке дифавтомат также помещается довольно компактно.

Есть и свои недостатки у дифавтоматов. При выходе со строя придётся приобретать изделие в комплекте, а не по отдельности.

Возникновение короткого замыкания приведёт к трудностям в поиске его причины. При разделенной установке идентификация намного проще: выключился УЗО – утечка, автомат – короткое замыкание.

Какой выбрать вид защитного устройства, вопрос не из лёгких. Как делают многие электрики: если речь идёт о небольшой квартире, тогда используйте дифавтомат.

Теперь опредилемся,как выбрать сечения кабеля для электропроводки

По приведенным выше формулам можно рассчитать мощность электросети и значение рабочего тока в сети. Остаяется по полученным значениям выбрать сечение электрического кабеля, который можно использовать для рассчитываемой проводки в квартире.

Это совсем просто. В настольной книги электрика, ПУЭ-правила устройства электрустановок, все сделано за нас. По таблице ниже ищете значение расчитаного тока нагрузки или расчетную мощность сети и выбираете сечение электрического кабеля.Таблица приводится для медных жил кабелей или проще, медного кабеля ,потому что использование аллюминевых кабелей в электропроводке жилых помещений запрещено.(читайте ПУЭ изд.7) 

Проложенные открыто

   

Сечение жил кабеля

Медные жилы

  

мм2

Ток нагрузки

Мощн.кВт

 
 

А

220 В

380 В

0,5

11

2,4

 

0,75

15

3,3

 

1

17

3,7

6,4

1,5

23

5

8,7

2

26

5,7

9,8

2,5

30

6,6

11

4

41

9

15

5

50

11

19

10

80

17

30

16

100

22

38

25

140

30

53

35

170

37

64

Проложенные в трубе

   

Сечение жил кабеля

Медные жилы

  

мм2

Ток накрузки

Мощн. кВт

 
 

А

220 В

380 В

0,5

   

0,75

   

1

14

3

5,3

1,5

15

3,3

5,7

2

19

4,1

7,2

2,5

21

4,6

7,9

4

27

5,9

10

5

34

7,4

12

10

50

11

19

16

80

17

30

25

100

22

38

35

135

29

51

Две расчетные таблицы для расчета и правильного выбора сечения кабеля и автоматов защиты 

ТАБЛИЦА 1.

из нормативов для определения расчетных электрических нагрузок зданий (квартир), коттеджей, микрорайонов (кварталов) застройки и элементов городской распределительной сети

NN пп

Наименование

Установленная мощность, Вт

1

Осветительные приборы

1800-3700

2

Телевизоры

120-140

3

Радио и пр. аппаратура

70-100

4

Холодильники

165-300

5

Морозильники

140

6

Стиральные машины без подогрева воды

600

 

с подогревом воды

2000-2500

7

Джакузи

2000-2500

8

Электропылесосы

650-1400

9

Электроутюги

900-1700

10

Электрочайники

1850-2000

11

Посудомоечная машина с подогревом воды

2200-2500

12

Электрокофеварки

650-1000

13

Электромясорубки

1100

14

Соковыжималки

200-300

15

Тостеры

650-1050

16

Миксеры

250-400

17

Электрофены

400-1600

18

СВЧ

900-1300

19

Надплитные фильтры

250

20

Вентиляторы

1000-2000

21

Печи-гриль

650-1350

22

Стационарные электрические плиты

8500-10500

23

Электрические сауны

12000

ТАБЛИЦА2.

2. ИСХОДНЫЕ ДАННЫЕ для расчетов электрических нагрузок жилых зданий (квартир) и коттеджей на перспективу 

1. Средняя площадь квартиры (общая), м:

 

— типовых зданий массовой застройки

— 70

— здания с квартирами повышенной комфортности (элитные) по индивидуальным проектам

— 150

2. Площадь (общая) коттеджа, м

— 150-600

3. Средняя семья

— 3,1 чел.

4. Установленная мощность, кВт:

 

— квартир с газовыми плитами

— 21,4

— квартир с электрическими плитами в типовых зданиях

— 32,6

— квартир с электрическими плитами в элитных зданиях

— 39,6

— коттеджей с газовыми плитами

-35,7

— коттеджей с газовыми плитами и электрическими саунами

-48,7

— коттеджей с электрическими плитами

— 47,9

— коттеджей с электрическими плитами и электрическими саунами

— 59,9

Elesant. ru

  • Выбор светильника для спальни
  • Групповые линии освещения: общие норма и правила
  • Как и когда вызывать электрика?
  • Как подобрать кабель в электросети 0,4кВ: сечение и длина кабеля
  • Осветительные сети промышленных предприятий
  • Отличие групповых сетей от питающих и распределительных сетей электропроводки
  • Получение разрешений для дополнительных мощностей
  • Ремонт старой электропроводки
  • Силовые цепи квартиры
  • Скрытая электропроводка

Подбираем номинал автоматического выключателя

Применив формулу I = P/209, получим, что при нагрузке с мощностью 1 кВт ток в однофазной сети будет 4,78 А. Напряжение в наших сетях не всегда равно в точности 220 В, поэтому не будет большой ошибкой силу тока считать с небольшим запасом как 5 А на каждый киловатт нагрузки. Сразу же видно, что в удлинитель, промаркированный «5 А», утюг мощностью 1,5 кВт включать не рекомендуется, так как ток будет в полтора раза превышать паспортную величину. А еще сразу можно «проградуировать» стандартные номиналы автоматов и определить, на какую нагрузку они рассчитаны:

  • 6 А – 1,2 кВт;
  • 8 А – 1,6 кВт;
  • 10 А – 2 кВт;
  • 16 А – 3,2 кВт;
  • 20 А – 4 кВт;
  • 25 А – 5 кВт;
  • 32 А – 6,4 кВт;
  • 40 А – 8 кВт;
  • 50 А – 10 кВт;
  • 63 А – 12,6 кВт;
  • 80 А – 16 кВт;
  • 100 А – 20 кВт.

С помощью методики «5 ампер на киловатт» можно оценить силу тока, возникающую в сети при подключении бытовых устройств. Интересуют пиковые нагрузки на сеть, поэтому для расчета следует использовать максимальную потребляемую мощность, а не среднюю. Эта информация содержится в документации на изделия. Вряд ли стоит самому рассчитывать этот показатель, суммируя паспортные мощности компрессоров, электродвигателей и нагревательных элементов, входящих в устройство, так как есть еще такой показатель, как коэффициент полезного действия, который придется оценивать умозрительно с риском сильно ошибиться.

При проектировании электропроводки в квартире или загородном доме не всегда доподлинно известны состав и паспортные данные электрооборудования, которое будет подключаться, но можно воспользоваться ориентировочными данными обычных для нашего быта электроприборов:

  • электросауна (12 кВт) — 60 А;
  • электроплита (10 кВт) — 50 А;
  • варочная панель (8 кВт) — 40 А;
  • электроводонагреватель проточный (6 кВт) — 30 А;
  • посудомоечная машина (2,5 кВт) — 12,5 А;
  • стиральная машина (2,5 кВт) — 12,5 А;
  • джакузи (2,5 кВт) — 12,5 А;
  • кондиционер (2,4 кВт) — 12 А;
  • СВЧ-печь (2,2 кВт) — 11 А;
  • электроводонагреватель накопительный (2 кВт) — 10 А;
  • электрочайник (1,8 кВт) — 9 А;
  • утюг (1,6 кВт) — 8 А;
  • солярий (1,5 кВт) — 7,5 А;
  • пылесос (1,4 кВт) — 7 А;
  • мясорубка (1,1 кВт) — 5,5 А;
  • тостер (1 кВт) — 5 А;
  • кофеварка (1 кВт) — 5 А;
  • фен (1 кВт) — 5 А;
  • настольный компьютер (0,5 кВт) — 2,5 А;
  • холодильник (0,4 кВт) — 2 А.


Как подключить проходной выключатель: схемы подключения


Расчет сечения кабеля по мощности: практические советы от профессионалов

Потребляемая мощность осветительных приборов и бытовой электроники невелика, в целом суммарную мощность осветительных приборов можно оценить в 1,5 кВт и автомата на 10 А на группу освещения достаточно. Бытовая электроника подключается к тем же розеткам, что и утюги, дополнительные мощности резервировать для нее нецелесообразно.

Если просуммировать все эти токи, цифра получается внушительная. На практике, возможности подключения нагрузки ограничивает величина выделенной электрической мощности, для квартир с электрической плитой в современных домах она составляет 10 -12 кВт и на квартирном вводе стоит автомат номиналом 50 А. И эти 12 кВт надо распределить, учитывая то, что самые мощные потребители сосредоточены на кухне и в ванной комнате. Проводка будет доставлять меньше поводов для беспокойства, если разбить ее на достаточное количество групп, каждая со своим автоматом. Для электроплиты (варочной панели) делается отдельный ввод с автоматом на 40 А и устанавливается силовая розетка с номинальным током 40 А, ничего больше туда подключать не надо. Для стиральной машины и другого оборудования ванной комнаты делается отдельная группа, с автоматом соответствующего номинала. Эту группу обычно защищают УЗО с номинальным током на 15% большим, чем номинал автоматического выключателя. Отдельные группы выделяют для освещения и для настенных розеток в каждой комнате.

На расчет мощностей и токов придется потратить некоторое время, но можно быть уверенным, что труды не пропадут даром. Грамотно спроектированная и качественно смонтированная электропроводка – залог комфорта и безопасности вашего жилища.

Вычисление показателей

Расчет мощности при выборе автомата проводится так. Например, все монтажные работы выполнены электрическим кабелем с сечением 3,0 и максимальной силой 25А.

Общая мощность приборов равна: микроволновая печь 1,5 kW, электрочайник 2,1 kW, холодильник 0. 7 kW, телевизор 0.5 kW. Суммарная мощность получается равной 4,7 kW или же 4.7 * 1000 W.

Чтобы мощность в каждой цепи было проще рассчитать, нагрузку разделяют на группы. Оборудование наибольшей мощности подключают отдельно. Не стоит пренебрегать нагрузкой малой мощности, поскольку при расчетах в сумме может получиться существенный результат.

Для вычисления используем формулу: мощность / напряжение. Итого 21,3 А. Потребуется УЗО или дифавтомат с граничным потреблением 25А, не более. Если количество потребителей более двух, то суммарную мощность следует умножать на 0,7, для корректировки данных. При нагрузке три и более – на 1,0.

Понижающие коэффициенты для некоторых приборов:

  • холодильное оборудование от 0,7 до 0,9, в зависимости от характеристик мотора;
  • подъёмные устройства и лифты 0,7;
  • оргтехника 0,6;
  • люминесцентные лампы 0,95;
  • лампы накаливания 1,1;
  • тип ламп ДРЛ 0,95;
  • неоновые газовые установки 0,4.

Понижение мощности обусловлено тем, что не все приборы могут быть включены одновременно.

По значению рабочего тока нагрузки подбирается автомат. Номинал автомата должен быть чуть меньше рассчитанного значения тока, но допускается выбирать и немного большие значения.

Какие еще параметры важны при выборе

Количество полюсов

Для простоты восприятия, вынесем за скобки трехфазные выключатели. Выбираем между 1 и 2 полюсными конструкциями. С точки зрения Правил устройства электроустановок (ПУЭ), разницы нет. Но те же правила подразумевают качественную организацию заземления или зануления. А если возникнет проблема с появлением фазы на нуле (к сожалению, в старом жилом фонде это реально), то лучше будет полностью отключить вашу квартиру от линий электропередач. Поэтому, если вы можете выбрать какой вводной автомат устанавливать — возьмите двухполюсный.

Время — токовая характеристика

Существуют разные типы кривых времятоковых характеристик, обозначаются они латинскими буквами: A, B, C, D… Начиная с A и далее происходит постепенное загрубление чувствительности устройства. Например, тип «B» означает срабатывание электромагнитного расцепителя при 3–4 кратном превышении тока, тип «C» при 5–7 кратном, «D» при 10-ти кратном. Тепловой расцепитель будет срабатывать одинаковым образом у разных типов времятоковых характеристик.

Более точные данные всегда необходимо получать из документации производителя на каждое конкретное изделие, например, для вводных автоматов BA47-29 характеристики срабатывания следующие:

Пример графиков для BA47-29 с характеристиками (типами) B, C, D приведены ниже на картинке, зависимости для других типов можно найти на официальных сайтах производителей. Выбор того или иного типа обусловлен видом подключаемой нагрузки, а точнее ее способностью потреблять ток скачкообразно. Например, у двигателей пусковой ток превышает номинальный в несколько раз, и в зависимости от их разновидностей могут применяться устройства типа «C» или «D». Тип «B» рекомендован при нагрузках, не имеющих значительных пусковых токов.

Также, использование типов с уменьшенной чувствительностью срабатывания имеет смысл для увеличения вероятности срабатывания нижестоящих групп автоматических выключателей.

Номинальный ток

Основная характеристика, по которой и происходит, в основном, выбор устройства. Тем не менее, как мы убедились в предыдущем разделе, необходимо учитывать и времятоковую характеристику, так как реальный ток срабатывания зависит одновременно как от номинального тока, так и от типа характеристики. В ранее приведенных таблицах номинальный ток обозначен как In. Теоретически, при отсутствии пусковых токов, нагрузка, потребляющая ток, равный номинальному не должна приводить к срабатыванию (отключению) устройства.

Способ крепления

На сегодняшний день, альтернативы нет. Это выключатели, которые устанавливаются на DIN рейку. Никакого прямого прикручивания на стену или корпус щитка. Только монтаж на DIN фиксаторы. Однако, при использовании специальных аксессуаров возможны и другие типы крепления.

Прибор может быть в отдельном корпусе, или установлен в общий щит — это неважно. Главное, обеспечить свободный доступ для владельца

Важный момент: опломбировка вводного автомата. Есть множество способов ограничить доступ к контактам (для исключения несанкционированного подключения). Можно установить заглушки на отверстия для затяжки винтов на контактах.Или просто поставить пломбы на крышки, закрывающие контактные группы.Главное, чтобы после опломбирования можно было беспрепятственно включать и выключать энергоснабжения.

Номиналы автоматов по току таблица

Необходимость выбора автоматических выключателей возникает во время проектирования электрических сетей в новых домах, а также при подключении приборов и оборудования с более высокой мощностью. Таким образом, в процессе дальнейшей эксплуатации обеспечивается надежная электрическая безопасность объектов.

Халатное отношение к выбору устройства с необходимыми параметрами приводит к серьезным негативным последствиям. Поэтому перед выбором автоматического защитного устройства нужно обязательно убедиться, что установленная проводка выдержит запланированную нагрузку. В соответствии с ПУЭ автоматический выключатель должен обеспечивать защиту от перегрузки наиболее слабого участка цепи. Его номинальный ток должен соответствовать току подключаемого устройства. Соответственно и проводники выбираются с требуемым сечением.

Чтобы рассчитать мощность автомата по току, необходимо воспользоваться формулой: I=P/U, где Р является суммарной мощностью всех электрических приборов, имеющихся в квартире. Вычислив необходимый ток, можно выбрать наиболее подходящий автомат. Существенно упрощает проведение расчетов таблица, с помощью которой можно выбрать автоматический выключатель в зависимости от конкретных условий эксплуатации. Расчет автомата по мощности тока осуществляется в основном для электроустановок – электродвигателей, трансформаторов и других устройств, имеющих реактивную нагрузку.

Особенности защиты электрических двигателей в производственных условиях

Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.

Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:

Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.

Выбрать автоматические выключатели по мощности, току. Как рассчитать по номинальной нагрузке автоматический выключатель. Подбор автоматов защиты.

Как подобрать автоматический выключатель

В статье пойдет речь о том, что такое автоматический выключатель, как выбрать номинал и бренд этого защитного устройства. Перед описанием, как сделать подбор автоматических выключателей, напомним немного общей информации и терминологии касательно самого автоматического выключателя.

Автоматический выключатель – от чего защищает?

Автоматический выключатель – это электрический прибор, который предназначен для защиты питающего провода (кабеля) от тока короткого замыкания и тепловой перегрузки.
Короткое замыкание (КЗ) – это соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Другими, более понятными, словами для обычного пользователя, объясним: короткое замыкание – это соединение двух разных токонесущих проводов, например, фазного проводника и нейтрального, или же двух разных фазных.
Короткое замыкание это аварийное состояние, которое может привести к локальному возгоранию проводки и дальнейшему пожару.
Тепловая перегрузка – возникает при длительном протекании тока превышающего номинальный, как следствие – расплавленная изоляция проводника, короткое замыкание. Например, если на линии проложен медный кабель с сечением жил 1,5 мм², то по нормам, ток протекающий по нему не должен превышать показаний более 16 Ампер (3500 Ватт). Любое превышение тока на этой линии приводит к тепловой перегрузке, поэтому если вы сознательно решили перегрузить электролинию, например, захотели погреться мощным обогревателем, то советуем учесть все вышенаписанное.

Итак, а теперь по порядку: как сделать правильный подбор автоматических выключателей?

Необходим автомат защиты, а как выбрать автоматический выключатель по мощности тока и какого производителя?
Ниже опишем главные параметры и особенности которые и будут влиять на выбор автоматических выключателей.
Чтобы правильно выбрать автоматический выключатель нам необходимо определить какую линию он будет защищать, а именно тип провода и сечение проводящей жилы этого провода. Тут все просто – чем больше сечение проводника, тем больше нагрузку он сможет выдержать.
Сечение проводника можно узнать несколькими способами: математическим с вычислением и визуальным методами. Не будем заострять внимание на математическом процессе измерения жилы провода штангенциркулем и вычисление сечения по формуле, так как даже опытные специалисты не всегда могут получить корректные результаты таким образом, а сразу перейдем к простому методу – визуальному. Все упрощается, когда у вас в квартире или доме новая проводка, достаточно прочитать на свежей изоляции кабеля его сечение и через несколько мгновений (используя нашу таблицу, см. ниже) вы уже знаете, наверняка, какой номинальный ток автоматического выключателя будет защищать этот провод.
Сложнее в случае, когда проводка старая и большая ее часть замурована в стене, а для визуального определения нам доступен лишь торчащий кусочек кабеля в несколько сантиметров. Действительно, как в этом случае узнать сечение проводника и как к нему выбрать автоматический выключатель?
Здесь от вас потребуется визуально сравнить жилы кабеля. Например, рядом приставить уже идентифицированную жилу другого кабеля и таким образом, вычислить примерное сечение. Мы понимаем, что такое определение сечения является очень грубым поэтому для страховки, расчет автоматического выключателя к таким проводам необходимо делать с запасом, то есть выбрать автоматический выключатель меньшего максимально допустимого номинала. Обратите внимание, что у нас в статье речь идет о медных кабелях и в таблице приведены данные именно для медных проводников. На всякий случай заметим, что алюминиевые провода, в сравнении с медными, способны к меньшим нагрузкам при равном сечении.

Какой автоматический выключатель выбрать по номиналу?

Таблица для выбора автоматического выключателя.

Выбор автоматического выключателя в зависимости от тока нагрузки, сечения провода/кабеля и способа прокладки. ГОСТ Р 50345-2010 (МЭК 60364-5-52).

 

 

Таблица для выбора автоматического выключателя по нагрузке. Используйте данные из таблицы, они помогут вам рассчитать автоматический выключатель.
Выбор автоматического выключателя в зависимости от тока нагрузки, сечения провода/кабеля и способа прокладки. ГОСТ Р 50345-2010 (МЭК 60364-5-52).
Подбирайте автоматический выключатель к холодильнику, бойлеру, стиральной машине и к другим электрическим приборам.

 

 

Как подобрать вводной автоматический выключатель

Вводной автоматический выключатель – это автомат защиты, находящийся в цепи самый первый по схеме и подбирается такой автомат по мощности и току исходя из сечения вводного кабеля, то есть вводной автомат защищает вводной кабель. Соответственно необходимо учитывать сечение именно вводного кабеля.

Какой производитель автоматического выключателя выбрать

Выбор автомата защиты это ответственное занятие, так как речь идет о безопасности. После того, как вы, подобрали автоматический выключатель по току, предварительно учли параметры сечение проводов и нагрузки, остается последний вопрос – какого производителя автоматического выключателя выбрать? Сегодня, рынок перенасыщен предложениями различных производителей, как выбрать автоматический выключатель среди десятков предлагаемых брендов мы опишем ниже.
Начав подбор автоматического выключателя по бренду, поинтересуйтесь у продавца, где сделан выключатель, и не забудьте спросить про документы подтверждающие качество устройства. Все современные качественные автоматические выключатели имеют сертификацию независимых лабораторий, что дает косвенный показатель оригинальности и надежности изделия. Если обратить внимание на автоматические выключатели Abb, то они имеют сразу несколько сертификатов качества таких лабораторий, их отметку можно найти на корпусе каждого защитного изделия Abb.
Например, сертификат CEBEC (Бельгийская инспекция по электротехнической стандартизации, основывается на результатах международных стандартов). Изделия прошедшие стандартизацию лаборатории CEBEC, перед разрешением продаж, подвергаются тщательным испытаниям в Бельгии. Вот такой автомат защиты можно с уверенностью выбирать, он обеспечит правильную и надежную защиту.
Стоит заметить, что стоимость автоматических выключателей, прямо пропорционально количеству регалий (отметок лабораторий), поэтому если вы хотите выбрать качественный, надежный и в то же время относительно недорогой автоматический выключатель, советуем выбрать фирменный автоматы самой бюджетной серии, например, автоматические выключатели Hager. Очень важно не купить кустарную подделку, по этому приобретайте автоматические выключатели в специализированных магазинах или у официальных дистрибьюторов. Интернет-магазин «Электрика-Шоп» является специализированным магазином электрики. Наша компания официальная точка продажи продукции таких фирм, как Abb, Hager, Moeller / Eaton, Schneider Electric, Doepke, Legrand. Обращайтесь к нам, мы проконсультируем вас и поможем правильно выбрать автоматический выключатель для вашего дома или квартиры.

Выбор автоматического выключателя

Автоматический выключатель должен соответствовать требованиям, предъявляемым к нему в каждом конкретном случае, поэтому для успешного выбора модели нужно знать параметры защищаемой электропроводки, подключаемых к ней нагрузок и главные характеристики электропитания.

Основываясь на этих данных и необходимых параметрах защиты, можно выбрать нужные автоматы для реализации схемы электрощита и системы токовой защиты в целом. Так как схема может быть достаточно сложной и не только состоять из нескольких ступеней защиты, но и иметь несколько вводных и отходящих линий, то для выбора выключателей в то или иное место нужно также учитывать указанные выше параметры смежных автоматов и других аппаратов защиты установленных до и после выбираемого автомата.

Чтобы выбрать подходящий автоматический выключатель, нужно обратить внимание на следующие характеристики:

Номинальное напряжение Ue (B)

Это максимальное допустимое значение напряжения в условиях нормальной работы. При меньших величинах напряжения отдельные характеристики могут изменяться или, в некоторых случаях, улучшаться (например отключающая способность).

Номинальное напряжение изоляции Ui (кB)

Установленное изготовителем значение напряжения, характеризующее максимальное номинальное напряжение выключателя. Максимальное номинальное напряжение ни в коем случае не должно превышать номинальное напряжение изоляции.

Номинальное импульсное напряжение Uimp (кВ)

Номинальное импульсное напряжение – пиковое значение импульсного напряжения заданной формы и полярности, которое автомат способен выдержать без ущерба.

Номинальный ток In (А)

Это наибольший ток, который автомат может проводить неограниченное долгое время при температуре окружающего воздуха 40°С по ГОСТ Р 50030.2-99 и 30°С по ГОСТ Р 50345-99. При более высоких температурах значение номинального тока уменьшается.

Предельный ток короткого замыкания

Эта характеристика определяет максимальный ток, при протекании которого автоматический выключатель способен разомкнуть цепь хотя бы один раз. Так же её называют предельная коммутационная способность (ПКС). Иначе говоря, ПКС показывает максимальный ток при котором подвижный контакт автомата не приварится (не пригорит) к неподвижному контакту при возникновении и гашении дуги при размыкании контактов. Токи короткого замыкания могут достигать нескольких тысяч ампер и указываются на маркировке модели.

Класс токоограничения

Параметр, напрямую влияющий на безопасность, надежность и долговечность электропроводки. Он заключается в отключении питания защищаемой цепи раньше, чем ток короткого замыкания достигнет своего максимума. Благодаря этому изоляция не подвергается повышенному нагреву при коротких замыканиях, тем самым снижая риск возникновения возгорания. Класс токоограничения — это время от момента начала размыкания силовых контактов автоматического выключателя до момента полного гашения электрической дуги в дугогасительной камере. Существует три класса токоограничения: 1, 2, 3. Самый высокий класс — 3. Время гашения дуги автомата этого класса происходит за 2,5…6 мс , 2-го класса — 6…10 мс, 1 класса — за время более 10 мс. Данная характеристика указывается под значением предельной коммутационной способности в черном квадрате. Автоматы с токоограничением 1-го класса не маркируются.

Количество полюсов

Данная характеристика определяет максимально возможное количество подключаемых к автомату защиты питающих и защищаемых проводов/проводников, одновременное отключение которых происходит при аварийной ситуации (превышение значения номинального тока и кривой отключения свыше определенного времени) в любой из подключенных цепей.

Номинальная отключающая способность Icu (кА)

Это способность автомата отключить защищаемый участок при возникновения в нем тока короткого замыкания, не превышающем величины предельной коммутационной способности. Если ток будет превышать её, то защита линии и способность автомата отключиться не гарантируется. Если автомат выбран по номинальной отключающей способности, то он может обеспечить защиту от тока короткого замыкания несколько раз.

Кривая отключения

Это характеристика зависимости времени отключения от протекаемого тока. Иначе её еще называют токо-временная характеристика. Выбор должен осуществляться в соответствии с типом Вашей системы, так как требования по защите всегда различны. Существует несколько типов кривых, самые популярные из них это типы B, C, и D: 1. Кривая B предназначена в основном для защиты генераторов, пиковых бросков тока нет. Расцепление от 3 до 5 номинальных токов. 2. Кривая C необходима для защиты цепей в случаях общего применения. Расцепление от 5 до 10 номинальных токов. 3. Кривая D требуется для защиты цепей с высоким пусковым током (трансформаторов и двигателей). Расцепление от 10 до 20 номинальных токов.

Степень защиты — IP

Степень защиты автоматического выключателя от неблагоприятных воздействий окружающей среды характеризуется международным стандартом IP и обозначается двумя цифрами, например IP20. Более подробно об этой важной характеристике Вы можете узнать в статье Что такое класс защиты IP

Что обозначает маркировка выключателя?

На фото изображена маркировка однополюсного автоматическиго выключателя фирмы Siemens. На его примере рассмотрим типичные обозначения данного ряда устройств: 5SY61 MCB — полное название модели, С 10 — кривая отключения типа С и номинальный ток 10 А, 230-400V — номинальное напряжение. Схемы показывают 2 рабочих положения автомата: I — цепь замкнута ( положение 1), O — цепь разомкнута (положение 2). Ниже слева от индикатора включения представлена предельная коммутационная способность (ток короткого замыкания) — 6000 А, под ней расположен класс токоограничения — 3. Подробное описание всех этих параметров приведено выше.

Зная эти характеристики можно без труда подобрать нужную модель. На нашем сайте представлен широкий ассортимент автоматических выключателей и вся необходимая информация о них. Задавайте все интересующие Вас вопросы через форму «Помощь онлайн», и Вам обязательно помогут с выбором. Удачных приобретений!

Выбор автоматического выключателя по характеристикам.

Автоматический выключатель – низковольтный коммутационный аппарат, обеспечивающий защиту электрической цепи от токовых перегрузок, связанных с подключением большого количества приборов (суммарная мощность которых превышает допустимую), неисправностью приборов или тока короткого замыкания (КЗ). Если выключатель не сработает вовремя и не обесточит линию, большая сила тока может вывести из строя бытовые приборы, а также привести к высокому нагреву кабеля с последующим возгоранием изоляции. Поэтому основная задача автоматического выключателя – определить появление чрезмерного тока и отключить сеть раньше, не допуская пожароопасной ситуации или повреждений приборов. В соответствии с требованиями Правил устройств электроустановок (ПУЭ), эксплуатация сети без автоматов защиты – запрещена. Для того, чтобы правильно подобрать необходимые автоматы защиты, нужно знать основные характеристики автоматических выключателей: это номинальный ток и время-токовая характеристика.

Номинальный ток – максимальный ток, который может протекать через автоматический выключатель бесконечно долго, не отключая защищаемую электрическую сеть.
Время-токовая характеристика — это зависимость времени срабатывания от силы тока, протекающего через автоматический выключатель.

Принцип работы автоматического выключателя

Основные органы срабатывания автоматического выключателя – Тепловой расцепитель (биметаллическая пластина) и электромагнитный расцепитель (соленоидом с сердечником). При нормальной работе электрической сети и подключенных в сеть приборов, через автоматический выключатель протекает электрический ток. Биметаллическая пластина от воздействия повышенного тока нагревается и изгибается приводя в действие механизм расцепления. В зависимости от категории автоматического выключателя, время срабатывания будет происходить быстрее или медленнее.

Категории (типы) автоматических выключателей

Автоматические выключатели делятся на типы в зависимости от чувствительности мгновенного расцепителя. Обозначаются класс латинскими буквами A, B, C и D.

Автоматические выключатели типа А (2 – 3 значения номинального тока) срабатывают без выдержки времени (неселективные). Применяются в основном для защиты цепей с большой протяженностью и для защиты микропроцессорных устройств.
Автоматические выключатели типа B (от 3 до 5 значений номинального тока). То есть выключатель с маркировкой В16 сработает при силе тока от 48А до 80А. Данные выключатели широко используются в быту, в основном в домах со старой проводкой, на дачах или в сельской местности.
Автоматические выключатели типа C (от 5 до 10 значений номинального тока). Выключатель с маркировкой С16 сработает при силе тока от 80А до 160А. Используются выключатели типа С в основном в новых многоквартирных домах, где в сеть может быть подключено много бытовой техники (стиральная машина, утюг, холодильник, кондиционер, посудомоечная машина, электрический чайник, микроволновая печь, пылесос и пр.).
Автоматические выключатели типа D (от 10 до 20 номинальных токов) используются для защиты цепей, питающих электрические установки с высокими пусковыми токами (компрессоры, электромоторы, станки, насосы и подъемные механизмы) и применяются в основном в производственных помещениях. Также устройства с характеристикой D используют в общих сетях зданий, где они выполняют подстраховочную роль, если в отдельных помещениях по каким-то причинам не произошло своевременного отключения электроэнергии.
Зависимость времени отключения от силы тока нагляднее всего можно изобразить в виде графика.

Автоматические выключатели типа  K приборы типа K имеют большой разброс в величинах тока, необходимых для электромагнитного расцепления. Так, для цепи переменного тока этот показатель должен превышать номинальный в 12 раз, а для постоянного – в 18. Срабатывание электромагнитного соленоида происходит не более чем через 0,02 сек. Срабатывание теплового расцепителя в таком оборудовании может произойти при превышении величины номинального тока всего на 5%.

Автоматические выключатели типа  Z приборы типа Z тоже имеют разные токи срабатывания соленоида электромагнитного расцепления, но разброс при этом не столь велик, как в АВ категории K. В цепях переменного тока для их отключения превышение токового номинала должно быть трехкратным, а в сетях постоянного – величина электротока должна быть в 4,5 раза больше номинальной.


Количество полюсов автоматических выключателей

Однополюсные автоматические выключатели используются для защиты цепей с приборами освещения и розетками, куда подключаются обычные однофазные бытовые приборы.
Для защиты однофазной проводки, куда подключаются отопительные приборы, водонагреватели, электрические плиты, стиральные машины в качестве защиты между щитом и помещением устанавливаются двухполюсные автоматические выключатели.

Двухполюсные АВ при отключении обеспечивает разрыв не только «фазы», но и «нуля».
Нельзя устанавливать два однополюсных выключателя для защиты фазного и нулевого провода! Для этих целей применяют двухполюсные автоматы, которые отключают «ноль» и «фазу» одновременно.

В трехфазной сети, в основном в промышленности, применяются 3-х полюсные автоматические выключатели.

4-х полюсные выключатели являются вводными автоматами и обеспечивают защиту 3-х фазной электросети: 3 фазы + нейтраль.

Вводной автоматический выключатель обязательно должен отключать все фазы и рабочий «ноль», так как имеется вероятность поражения электрическим током при проведении обслуживания или работ с проводкой.

Выбор автоматического выключателя — советы рекомендации по выбору автомата

Автоматический выключатель пользователи называют пробкой, защитным автоматом, пакетником. Когда перегорает лампочка, ломается техника, «выбивает пробки». Собственно, в этот момент срабатывает автоматический выключатель.

Он выполняет 3 основные функции:

  • Коммутацию цепи.
  • Обеспечение защиты от перегрузки.
  • Отключение от цепи сети при возникновении токов короткого замыкания.

При выборе этого устройства обращают внимание на рабочее напряжение, полюсность, номинальный ток, ток короткого замыкания, класс срабатывания.

В зависимости от количества полюсов бывают однофазные, двух-, трех-, четырехполюсные устройства.

Электроподключение в домах, квартирах чаще всего бывает однофазным или трехфазным. В первом варианте достаточно однополюсного автомата. Если же подключение происходит по трехфазной системе, то приобретать нужно четырехполюсное устройство.

Номинальный ток

Востребованные значения для бытовых автоматов: 6, 10, 16, 25, 32, 50А. Подбор устройства осуществляется на основе толщины провода. Чем он толще, тем больший ток сможет выдержать. Толщина цепей может быть разной, поэтому автомат подбирать следует для каждого провода индивидуально.

Мощность нагрузки

При подключении к линии одного устройства с большой потребляемой мощностью следует подобрать подходящий по мощности автомат. Вычисления проводятся по специальной формуле. Обязательно нужно учитывать то, что длительно допустимый ток должен быть больше предельного тока автомата.

Отключающая способность

Эта характеристика зависит от многих показателей, но чаще всего ориентируются на размещение подстанции. Расчеты производятся крайне редко.

Класс расцепителя

При повышении тока срабатывание автомата происходит при достижении максимальных показателей. Кратковременные перегрузки случаются периодически, но если ток возрастает из-за КЗ, то срабатывает авторасцепитель.

Он срабатывает при следующих величинах:

  • Превышает номинальный ток в 3-5 раз- класс В
  • При превышении показателя до 10 раз — класс С.
  • Увеличение показателя в 20 раз — класс D.

Для квартир, домов выбирают устройства С, а для предприятий, компаний выбирают класс D. Для дачных домов чаще всего приобретают устройства класса B.

Производитель

Помимо вышеперечисленных характеристик важно также уделять внимание производителям. Одним из самых надежных и долговечных является автоматический выключатель ABB. Он зарекомендовал себя только с наилучшей стороны. Опытные специалисты отдают предпочтение именно этим изделиям и обходят стороной неизвестные фирмы. Помните, что от качества оборудования, монтажа зависит надежность и долговечность системы.

Примеры расчета автоматических выключателей в электрической цепи

Вводная часть

Любая электрическая цепь в квартире и доме, должна защищаться автоматом защиты от перегрузок и сверхтоков короткого замыкания. Эту нехитрую истину можно наглядно продемонстрировать в любом электрическом щите квартиры, этажном щите, вводно-распределительном щите дома и т.п. электрическим шкафам и боксам.

Вопрос не в том, ставить автомат защиты или нет, вопрос, как рассчитать автомат защиты, чтобы он правильно выполнял свои задачи, срабатывал, когда нужно и не мешал стабильной работе электроприборов.

Примеры расчета автоматических выключателей

Теорию расчетов автоматических выключателей вы можете почитать в статье: Расчет автоматов защиты. Здесь несколько практических примеров расчета автоматических выключателей в электрической цепи дома и квартиры.

Пример 1. Расчет вводного автомата дома

Примеры расчета автоматических выключателей начнем с частного дома, а именно рассчитаем вводной автомат. Исходные данные:

  • Напряжение сети Uн = 0,4 кВ;
  • Расчетная мощность Рр = 80 кВт;
  • Коэффициент мощности COSφ = 0,84;

1-й расчет:

Чтобы выбрать номинал автоматического выключателя считаем номинал тока нагрузки данной электросети:

Iр = Рр / (√3 × Uн × COSφ) Iр = 80 / (√3 × 0,4 × 0,84) = 137 А

2-й расчет

Чтобы избежать, ложное  срабатывание автомата защиты, номинальный ток автомата защиты (ток срабатывания теплового расцепителя) следует выбрать на 10% больше планируемого тока нагрузки:

  • Iток.расцепителя = Iр × 1,1
  • Iт.р = 137 × 1,1 = 150 А

Итог расчета: По сделанному расчету выбираем автомат защиты (по ПУЭ-85 п. 3.1.10) с током расцепителя ближайшим к расчетному значению:

  • I ном.ав = 150 Ампер (150 А).

Такой выбор автомата защиты позволит стабильно работать электрической цепи дома в рабочем режиме и срабатывать, только в аварийных ситуациях.

Пример 2. Расчет автоматического выключателя групповой цепи кухни

примеры расчета автоматических выключателей

Во втором примере посчитаем, какой автоматический выключатель нужно выбрать для кухонной электропроводки, которую правильно называть розеточная групповая цепь электропроводки кухни. Это может быть кухня квартиры или дома, разницы нет.

Аналогично первому примеру расчет состоит из двух расчетов: расчет тока нагрузки электрической цепи кухни и расчет тока теплового расцепителя.

Расчет тока нагрузки

Исходные данные:

  • Напряжение сети Uн = 220 В;
  • Расчетная мощность Рр = 6 кВт;
  • Коэффициент мощности COSφ = 1;

1. Расчетную мощность считаем, как сумму мощностей всех бытовых приборов кухни, умноженной на коэффициент использования, он же коэффициент использования бытовой техники.

2. Коэффициент использования бытовой техники это поправочный коэффициент, уменьшающий расчетную (полную) потребляемую мощность электроцепи и учитывающий количество одновременно работающих электроприборов.

То есть, если на кухне установлено 10 розеток для 10 бытовых приборов (стационарных и переносных), нужно учесть, что все 10 приборов одновременно работать не будут.

Коэффициент использования

Рассчитать коэффициент использования для простой группы можно самостоятельно.

  • Выпишите на листок планируемые бытовые приборы.
  • Рядом с прибором поставьте его мощность по паспорту.
  • Просуммируйте все мощности приборов по паспорту. Это Pрасчет.
  • Подумайте, какие приборы могут работать одновременно: чайник+ тостер, микроволновка+блендер, чайник+микроволновка+тостер, и т.д.
  • Посчитайте суммарные мощности этих групп. Рассчитайте среднюю суммарную мощность групп одновременно включаемых приборов. Это будет Pноминал (номинальная мощность).
  • Разделите  Pрасчет на Pноминал, получите коэффициент использования кухни.

На самом деле, в теории расчетов коэффициент использования внутри дома (без инженерных сетей) и квартиры принимается равным, единице, если количество розеток не больше 10. Это так, но на практике, именно коэффициент использования позволяет работать современным бытовым приборам кухни на старой электропроводке.

Примечание:

В теории расчетов 1 бытовая розетка планируется на 6 кв. метров квартиры (дома). При этом:

  • коэффициент использования=0,7 –для розеток от 50 шт.;
  • коэффициент использования=0,8 –розеток 20-49 шт.;
  • коэффициент использования=0,9 –розеток от 9 до 19шт.;
  • коэффициент использования=1,0 –розеток ≤10шт.

Вернемся к автоматическому выключателю кухни. Считаем номинал тока нагрузки кухни:

  • Iр = Рр / 220В;
  • Iр = 6000 / 220= 27,3 А.

Ток расцепителя:

  • Iрасчет.= Iр×1,1=27,3×1,1=30А

По сделанному расчету выбираем номинал автомата защиты для кухни в 32 Ампер.

Вывод

Приведенный пример расчета кухни получился несколько завышенным, обычно для электропроводки кухни хватает 16 ампер если учесть, что плиту, стиральную машину, посудомоечную машину выводят в отдельные группы.

Эти примеры расчета автоматических выключателей для групповых цепей, лишь показывают общий принцип расчетов, причем не включают расчет инженерных цепей включающий работу насосов, станков и других двигателей частного дома.

Фотогалерея автоматов защиты

©Ehto.ru

Статьи по теме

Пошаговое руководство по выбору автоматического выключателя

При выборе автоматического выключателя следует учитывать несколько различных критериев, включая напряжение, частоту, отключающую способность, номинальный длительный ток, необычные условия эксплуатации и испытания продукта. Эта статья даст пошаговый обзор выбора подходящего автоматического выключателя для вашего конкретного применения.

Номинальное напряжение

Общее номинальное напряжение рассчитывается на основе максимального напряжения, которое может быть приложено ко всем оконечным портам, типа распределения и того, как автоматический выключатель напрямую интегрирован в систему.Важно выбрать автоматический выключатель с достаточной допустимой нагрузкой для конечного применения.

Частота

Автоматические выключатели до 600 ампер могут применяться на частотах 50–120 Гц. Частоты выше 120 Гц приведут к снижению номинальных характеристик выключателя. Во время высокочастотных проектов вихревые токи и потери в стали вызывают больший нагрев компонентов теплового расцепителя, что требует снижения номинальных характеристик или специальной калибровки выключателя.Общая величина снижения мощности зависит от номинального тока, размера корпуса, а также от частоты тока. Общее практическое правило состоит в том, что чем выше номинальный ток в корпусе определенного размера, тем больше требуется снижение номинальных характеристик.

Все выключатели с более высоким номиналом свыше 600 ампер содержат биметаллические элементы с трансформаторным нагревом и подходят для работы в сетях переменного тока с частотой не более 60 Гц. Для приложений с минимальной частотой переменного тока 50 Гц обычно доступна специальная калибровка. Полупроводниковые выключатели предварительно откалиброваны для приложений с частотой 50 или 60 Гц.Если вы делаете проект дизельного генератора, частота будет 50 Гц или 60 Гц. Лучше всего заранее проконсультироваться с подрядчиком по электротехнике, чтобы убедиться, что меры по калибровке приняты, прежде чем приступать к проекту с частотой 50 Гц.

Максимальная отключающая способность

Рейтинг отключения обычно принимается как наибольшая величина тока короткого замыкания, которую выключатель может отключить, не вызывая сбоя системы.Определение максимального значения тока короткого замыкания, подаваемого системой, можно рассчитать в любой момент времени. Одно безошибочное правило, которое необходимо соблюдать при установке правильного автоматического выключателя, заключается в том, что отключающая способность выключателя должна быть равной или большей, чем величина тока короткого замыкания, которая может быть доставлена ​​в той точке системы, где установлен выключатель. Несоблюдение правильного значения отключающей способности приведет к повреждению выключателя.

Постоянный ток

Что касается номинального продолжительного тока, автоматические выключатели в литом корпусе имеют номинал в амперах при определенной температуре окружающей среды.Этот номинальный ток представляет собой постоянный ток, который прерыватель будет проводить при температуре окружающей среды, при которой он был откалиброван. Общее практическое правило для производителей автоматических выключателей — калибровать свои стандартные выключатели на 104 ° F.

Номинальный ток для любого стандартного применения зависит исключительно от типа нагрузки и рабочего цикла. Номинальный ток регулируется Национальным электротехническим кодексом (NEC) и является основным источником информации о циклах нагрузки в подрядной электротехнической отрасли. Например, для осветительных и фидерных цепей обычно требуется автоматический выключатель, номинал которого соответствует допустимой нагрузке на проводник.Чтобы найти различные стандартные номинальные токи выключателя для проводов разного диаметра и допустимые нагрузки, обратитесь к таблице 210.24 NEC.

Нетипичные условия эксплуатации

При выборе автоматического выключателя очень важно учитывать местоположение конечного пользователя. Каждый выключатель индивидуален, и некоторые из них лучше подходят для более жестких условий эксплуатации. Ниже приведены несколько сценариев, которые следует учитывать при выборе автоматического выключателя:

Высокая температура окружающей среды: Если стандартные термомагнитные выключатели применяются при температурах, превышающих 104 ° F, параметры выключателя должны быть снижены или откалиброваны в соответствии с условиями окружающей среды.В течение многих лет все выключатели были откалиброваны на 77 ° F, что означало, что все выключатели с температурой выше этой должны были быть снижены. Реально большинство вольеров было около 104 ° F; Для таких ситуаций использовался обычный специальный выключатель. В середине 1960-х годов промышленные стандарты были изменены, чтобы все стандартные выключатели были откалиброваны с учетом температуры 104 ° F.

Коррозия и влага: В средах с постоянной влажностью для гидромолотов рекомендуется специальная обработка влаги.Эта обработка помогает противостоять плесени и / или грибку, которые могут вызвать коррозию устройства. В условиях повышенной влажности лучшим решением является использование обогревателей в корпусе. Если возможно, выключатели следует удалять из агрессивных зон. Если это нецелесообразно, доступны специальные выключатели, устойчивые к коррозии.

Высокая вероятность удара: Если автоматический выключатель будет установлен в зоне с высокой вероятностью механического удара, необходимо установить специальное противоударное устройство.Противоударные устройства состоят из инерционного противовеса над центральной стойкой, который удерживает переключающую штангу в защелкивании при нормальных условиях удара. Этот груз должен быть установлен таким образом, чтобы он не препятствовал работе тепловых или магнитных расцепителей при сценариях перегрузки или короткого замыкания. Военно-морской флот США является крупнейшим конечным пользователем молотов с высокой ударопрочностью, которые требуются на всех боевых кораблях.

Высота: В районах, где высота превышает 6000 футов, автоматические выключатели должны быть снижены в соответствии с допустимой нагрузкой по току, напряжением и отключающей способностью.На высоте более тонкий воздух не отводит тепло от токоведущих компонентов, а также более плотный воздух, находящийся на более низких высотах. Помимо перегрева, более разреженный воздух также предотвращает накопление диэлектрического заряда, достаточно быстрого, чтобы выдерживать те же уровни напряжения, которые возникают при нормальном атмосферном давлении. Проблемы с высотой также могут снизить номинальные характеристики большинства используемых генераторов и другого оборудования для выработки электроэнергии. Перед покупкой лучше всего поговорить со специалистом в области энергетики.

Положение покоя: По большей части выключатели могут быть установлены в любом положении, горизонтально или вертикально, без воздействия на механизмы отключения или отключающую способность.В районах с сильным ветром обязательно иметь выключатель в кожухе (большинство агрегатов поставляется закрытым) на поверхности, которая немного колеблется от ветра. Когда автоматический выключатель прикреплен к негибкой поверхности, существует вероятность разрыва цепи при воздействии сильного ветра.

Техническое обслуживание и тестирование

При выборе автоматического выключателя пользователь должен решить, покупать ли устройство, прошедшее испытания UL (Underwriters Laboratories), или нет.Для обеспечения общего качества рекомендуется приобретать автоматические выключатели, прошедшие испытания UL. Имейте в виду, что продукты, не прошедшие испытания UL, не гарантируют правильную калибровку выключателя. Все низковольтные автоматические выключатели в литом корпусе, внесенные в список UL, проходят испытания в соответствии со стандартом UL 489, который разделен на две категории: заводские испытания и полевые испытания.

Заводские испытания UL: Все стандартные автоматические выключатели в литом корпусе UL проходят обширные производственные и калибровочные испытания в соответствии со стандартом UL 489.Выключатели, сертифицированные UL, содержат откалиброванные системы с заводскими пломбами. Неповрежденная пломба гарантирует, что выключатель правильно откалиброван и не подвергался взлому, модификации и что продукт будет работать в соответствии со спецификациями UL. Если печать нарушена, гарантия UL аннулируется, как и любые другие гарантии.

Полевые испытания: Это нормальное явление, когда данные, полученные в полевых условиях, отличаются от опубликованной. Многие пользователи не понимают, являются ли полевые данные некорректными или опубликованная информация не синхронизирована с их конкретной моделью.Разница в данных заключается в том, что условия испытаний на заводе значительно различаются по сравнению с полевыми. Заводские испытания предназначены для получения стабильных результатов. Температура, высота, климат-контроль и использование испытательного оборудования, разработанного специально для тестируемого продукта, — все это влияет на результат. Публикация NEMA AB4-1996 — выдающееся руководство по испытаниям в полевых условиях. Руководство дает пользователю лучший вариант того, какие результаты являются нормальными для полевых испытаний. Некоторые выключатели поставляются со своими собственными инструкциями по тестированию.Если нет инструкций, обратитесь в надежную компанию по обслуживанию автоматических выключателей.

Техническое обслуживание: По большей части выключатели в литом корпусе имеют исключительную надежность, в основном благодаря тому, что блоки закрыты. Кожух сводит к минимуму воздействие грязи, влаги, плесени, пыли, других сред и несанкционированного доступа. Частью надлежащего технического обслуживания является обеспечение того, чтобы все клеммные соединения и расцепители были затянуты с надлежащим крутящим моментом, установленным производителем.Со временем эти соединения ослабнут, и их потребуется подтянуть. Автоматические выключатели также необходимо регулярно чистить. Неправильно очищенные проводники, неправильные проводники, используемые для клемм, и незакрепленные выводы — все это условия, которые могут вызвать чрезмерный нагрев и ослабление выключателя. Для выключателей с ручным управлением требуется только то, чтобы их контакты были чистыми и чтобы рычаги работали свободно. Для автоматических выключателей, которые не используются на регулярной основе, требуется прерывистый запуск выключателя для обновления систем.

Как всегда, лучше проконсультироваться с сертифицированным электриком, чтобы точно определить, какой тип автоматического выключателя подходит для вашего генератора. Факторы, влияющие на безопасную и правильную работу электрогенератора и автоматического выключателя, варьируются от объекта к объекту, и только лицензированный профессионал может подобрать правильное оборудование.

Ссылка: Matulic, Darko. «Автоматические выключатели» стр. 171-173 Электроэнергетика на месте, 4-е издание .Бока-Ратон, Флорида: Ассоциация электрических генерирующих систем, 2006.

Выбор автоматического выключателя — Руководство по устройству электроустановок

Выбор линейки автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и необходимостью дистанционного управления, а также типом предполагаемой системы связи.

Выбор автоматического выключателя

Выбор CB производится по:

  • Электрические характеристики (переменный или постоянный ток, напряжение…) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в точке установки
  • Характеристики защищаемых кабелей, сборных шин, шинопроводов и область применения (распределение, двигатель …)
  • Координация с вышестоящим и / или последующим устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором…
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и связанным вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Характеристики нагрузки, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при данной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их расцепителей (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют ток срабатывания, зависящий от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные характеристики будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. Рис. h49) можно заметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Кроме того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. , рис. h34, обычно устанавливаются в небольшой закрытый металлический корпус.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их снижения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако, чтобы обеспечить взаимный нагрев в замкнутом пространстве, необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 A, что не подходит для нагрузки 34 A.

A 50 A автоматический выключатель, следовательно, будет выбран, что дает (пониженный) номинальный ток 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока срабатывания при перегрузке (Ir или Irth) в заданном диапазоне независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для низковольтных распределительных систем, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным энергоснабжающим органом. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его договоре поставки с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели
  • LV на номиналы ≤ 630 A обычно оснащаются компенсируемыми расцепителями для этого диапазона (от — 5 ° C до + 40 ° C)

Примеры таблиц, в которых приведены значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики автоматического выключателя

приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / пониженные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в изменяющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. , рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 1830 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор мгновенного или кратковременного порога срабатывания срабатывания

На рисунке h51 ниже приведены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные устройства отключения, мгновенные или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, вырабатывающие низкие уровни тока короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий случай
Высокая установка

типа D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,грамм. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

типа МА

  • Защита двигателей с помощью контакторов и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, расположенным выше по потоку и имеющим требуемую отключающую способность при коротком замыкании.

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать ту, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты, без каких-либо повреждений.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадирование» (см. «Координация между автоматическими выключателями»).

Автоматические выключатели для IT-систем

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. Рисунок h52).

В этом случае автоматический выключатель должен устранить короткое замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка символом.

Регламент некоторых стран может добавлять дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно определенным национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например: выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного выключателя установки, питаемой от трехфазного трансформатора среднего / низкого напряжения (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Компактный NSX400N с регулируемым диапазоном отключающих устройств от 160 до 400 А и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на входной стороне CBM1.

Из этих соображений будет видно, что автоматический выключатель наименьшего трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как автоматический выключатель наибольшего трансформатора пройдет наименьший уровень короткого замыкания. -схемный ток

  • Номинальные параметры CBM должны выбираться в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. фазовый сдвиг напряжений от первичного к вторичному должен быть одинаковым для всех параллельно включенных устройств.

2. Соотношение напряжения холостого хода между первичной и вторичной обмотками должно быть одинаковым во всех блоках.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.

Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором на 1000 кВА с Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальным значениям в кВА. Для трансформаторов, имеющих коэффициент мощности более 2 кВА, параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP соответственно, в , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные блоки 4 кВ, указанные в перечне
  • Кабели от каждого трансформатора к его низковольтному выключателю состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи есть 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C

Пример

(см. Рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (из Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на рис. , рисунок h56, как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 будут токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинальное значение Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с соответствующей экономией для всех последующих компонентов

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно), для нескольких трансформаторов, включенных параллельно

Количество и номинальные значения кВА трансформаторов 20 / 0,4 кВ Минимальная отключающая способность S.C главных выключателей (Icu) кА Общая селективность главных автоматических выключателей (CBM) с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основного выключателя (Icu) кА Номинальный ток In главного выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 х 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 х 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 х 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 х 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Н 108 NSX100-630L
2 х 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и выключателей конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем может быть выбран автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в схеме ИТ должны соблюдаться следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Ток отключения при коротком замыкании: двухполюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного короткого замыкания
  • Защита от непрямого прикосновения: эта защита обеспечивается согласно правилам для схем IT

Выбор автоматического выключателя — Руководство по устройству электроустановок

Выбор линейки автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и необходимостью дистанционного управления, а также типом предполагаемой системы связи.

Выбор автоматического выключателя

Выбор CB производится по:

  • Электрические характеристики (переменный или постоянный ток, напряжение…) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в точке установки
  • Характеристики защищаемых кабелей, сборных шин, шинопроводов и область применения (распределение, двигатель …)
  • Координация с вышестоящим и / или последующим устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором…
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и связанным вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Характеристики нагрузки, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при данной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их расцепителей (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют ток срабатывания, зависящий от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные характеристики будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. Рис. h49) можно заметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Кроме того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. , рис. h34, обычно устанавливаются в небольшой закрытый металлический корпус.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их снижения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако, чтобы обеспечить взаимный нагрев в замкнутом пространстве, необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 A, что не подходит для нагрузки 34 A.

A 50 A автоматический выключатель, следовательно, будет выбран, что дает (пониженный) номинальный ток 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока срабатывания при перегрузке (Ir или Irth) в заданном диапазоне независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для низковольтных распределительных систем, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным энергоснабжающим органом. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его договоре поставки с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели
  • LV на номиналы ≤ 630 A обычно оснащаются компенсируемыми расцепителями для этого диапазона (от — 5 ° C до + 40 ° C)

Примеры таблиц, в которых приведены значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики автоматического выключателя

приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / пониженные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в изменяющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. , рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 1830 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор мгновенного или кратковременного порога срабатывания срабатывания

На рисунке h51 ниже приведены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные устройства отключения, мгновенные или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, вырабатывающие низкие уровни тока короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий случай
Высокая установка

типа D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,грамм. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

типа МА

  • Защита двигателей с помощью контакторов и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, расположенным выше по потоку и имеющим требуемую отключающую способность при коротком замыкании.

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать ту, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты, без каких-либо повреждений.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадирование» (см. «Координация между автоматическими выключателями»).

Автоматические выключатели для IT-систем

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. Рисунок h52).

В этом случае автоматический выключатель должен устранить короткое замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка символом.

Регламент некоторых стран может добавлять дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно определенным национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например: выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного выключателя установки, питаемой от трехфазного трансформатора среднего / низкого напряжения (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Компактный NSX400N с регулируемым диапазоном отключающих устройств от 160 до 400 А и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на входной стороне CBM1.

Из этих соображений будет видно, что автоматический выключатель наименьшего трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как автоматический выключатель наибольшего трансформатора пройдет наименьший уровень короткого замыкания. -схемный ток

  • Номинальные параметры CBM должны выбираться в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. фазовый сдвиг напряжений от первичного к вторичному должен быть одинаковым для всех параллельно включенных устройств.

2. Соотношение напряжения холостого хода между первичной и вторичной обмотками должно быть одинаковым во всех блоках.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.

Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором на 1000 кВА с Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальным значениям в кВА. Для трансформаторов, имеющих коэффициент мощности более 2 кВА, параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP соответственно, в , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные блоки 4 кВ, указанные в перечне
  • Кабели от каждого трансформатора к его низковольтному выключателю состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи есть 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C

Пример

(см. Рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (из Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на рис. , рисунок h56, как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 будут токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинальное значение Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с соответствующей экономией для всех последующих компонентов

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно), для нескольких трансформаторов, включенных параллельно

Количество и номинальные значения кВА трансформаторов 20 / 0,4 кВ Минимальная отключающая способность S.C главных выключателей (Icu) кА Общая селективность главных автоматических выключателей (CBM) с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основного выключателя (Icu) кА Номинальный ток In главного выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 х 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 х 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 х 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 х 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Н 108 NSX100-630L
2 х 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и выключателей конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем может быть выбран автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в схеме ИТ должны соблюдаться следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Ток отключения при коротком замыкании: двухполюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного короткого замыкания
  • Защита от непрямого прикосновения: эта защита обеспечивается согласно правилам для схем IT

Выбор автоматического выключателя — Руководство по устройству электроустановок

Выбор линейки автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и необходимостью дистанционного управления, а также типом предполагаемой системы связи.

Выбор автоматического выключателя

Выбор CB производится по:

  • Электрические характеристики (переменный или постоянный ток, напряжение…) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в точке установки
  • Характеристики защищаемых кабелей, сборных шин, шинопроводов и область применения (распределение, двигатель …)
  • Координация с вышестоящим и / или последующим устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором…
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и связанным вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Характеристики нагрузки, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при данной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их расцепителей (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют ток срабатывания, зависящий от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные характеристики будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. Рис. h49) можно заметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Кроме того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. , рис. h34, обычно устанавливаются в небольшой закрытый металлический корпус.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их снижения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако, чтобы обеспечить взаимный нагрев в замкнутом пространстве, необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 A, что не подходит для нагрузки 34 A.

A 50 A автоматический выключатель, следовательно, будет выбран, что дает (пониженный) номинальный ток 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока срабатывания при перегрузке (Ir или Irth) в заданном диапазоне независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для низковольтных распределительных систем, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным энергоснабжающим органом. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его договоре поставки с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели
  • LV на номиналы ≤ 630 A обычно оснащаются компенсируемыми расцепителями для этого диапазона (от — 5 ° C до + 40 ° C)

Примеры таблиц, в которых приведены значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики автоматического выключателя

приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / пониженные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в изменяющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. , рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 1830 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор мгновенного или кратковременного порога срабатывания срабатывания

На рисунке h51 ниже приведены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные устройства отключения, мгновенные или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, вырабатывающие низкие уровни тока короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий случай
Высокая установка

типа D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,грамм. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

типа МА

  • Защита двигателей с помощью контакторов и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, расположенным выше по потоку и имеющим требуемую отключающую способность при коротком замыкании.

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать ту, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты, без каких-либо повреждений.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадирование» (см. «Координация между автоматическими выключателями»).

Автоматические выключатели для IT-систем

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. Рисунок h52).

В этом случае автоматический выключатель должен устранить короткое замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка символом.

Регламент некоторых стран может добавлять дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно определенным национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например: выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного выключателя установки, питаемой от трехфазного трансформатора среднего / низкого напряжения (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Компактный NSX400N с регулируемым диапазоном отключающих устройств от 160 до 400 А и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на входной стороне CBM1.

Из этих соображений будет видно, что автоматический выключатель наименьшего трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как автоматический выключатель наибольшего трансформатора пройдет наименьший уровень короткого замыкания. -схемный ток

  • Номинальные параметры CBM должны выбираться в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. фазовый сдвиг напряжений от первичного к вторичному должен быть одинаковым для всех параллельно включенных устройств.

2. Соотношение напряжения холостого хода между первичной и вторичной обмотками должно быть одинаковым во всех блоках.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.

Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором на 1000 кВА с Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальным значениям в кВА. Для трансформаторов, имеющих коэффициент мощности более 2 кВА, параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP соответственно, в , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные блоки 4 кВ, указанные в перечне
  • Кабели от каждого трансформатора к его низковольтному выключателю состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи есть 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C

Пример

(см. Рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (из Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на рис. , рисунок h56, как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 будут токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинальное значение Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с соответствующей экономией для всех последующих компонентов

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно), для нескольких трансформаторов, включенных параллельно

Количество и номинальные значения кВА трансформаторов 20 / 0,4 кВ Минимальная отключающая способность S.C главных выключателей (Icu) кА Общая селективность главных автоматических выключателей (CBM) с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основного выключателя (Icu) кА Номинальный ток In главного выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 х 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 х 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 х 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 х 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Н 108 NSX100-630L
2 х 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и выключателей конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем может быть выбран автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в схеме ИТ должны соблюдаться следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Ток отключения при коротком замыкании: двухполюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного короткого замыкания
  • Защита от непрямого прикосновения: эта защита обеспечивается согласно правилам для схем IT

Выбор автоматического выключателя — Руководство по устройству электроустановок

Выбор линейки автоматических выключателей определяется: электрическими характеристиками установки, окружающей средой, нагрузками и необходимостью дистанционного управления, а также типом предполагаемой системы связи.

Выбор автоматического выключателя

Выбор CB производится по:

  • Электрические характеристики (переменный или постоянный ток, напряжение…) установки, для которой предназначен выключатель
  • Окружающая среда: температура окружающей среды, в помещении киоска или распределительного щита, климатические условия и т. Д.
  • Предполагаемый ток короткого замыкания в точке установки
  • Характеристики защищаемых кабелей, сборных шин, шинопроводов и область применения (распределение, двигатель …)
  • Координация с вышестоящим и / или последующим устройством: селективность, каскадирование, координация с выключателем нагрузки, контактором…
  • Эксплуатационные характеристики: требования (или нет) к дистанционному управлению и индикации и связанным вспомогательным контактам, вспомогательным катушкам отключения, соединению
  • Правила монтажа; в частности: защита от поражения электрическим током и теплового воздействия (см. Защита от поражения электрическим током и электрического пожара)
  • Характеристики нагрузки, такие как двигатели, люминесцентное освещение, светодиодное освещение, трансформаторы низкого / низкого напряжения

Следующие примечания относятся к выбору автоматического выключателя низкого напряжения для использования в распределительных сетях.

Выбор номинального тока в зависимости от температуры окружающей среды

Номинальный ток автоматического выключателя определяется для работы при данной температуре окружающей среды, как правило:

  • 30 ° C для выключателей бытового типа в соответствии с IEC 60898 серия
  • 40 ° C по умолчанию для автоматических выключателей промышленного типа в соответствии с серией IEC 60947. Однако может быть предложено другое значение.

Характеристики этих выключателей при различной температуре окружающей среды в основном зависят от технологии их расцепителей (см. Рис. х47).

Рис. H47 — Температура окружающей среды

Некомпенсированные термомагнитные расцепители

Автоматические выключатели с некомпенсированными тепловыми расцепителями имеют ток срабатывания, зависящий от температуры окружающей среды.

Автоматические выключатели с некомпенсированными тепловыми отключающими элементами имеют уровень тока отключения, который зависит от окружающей температуры. Если выключатель установлен в кожухе или в горячем месте (котельная и т. Д.), Ток, необходимый для отключения выключателя при перегрузке, будет значительно снижен.Когда температура, при которой находится выключатель, превышает его эталонную температуру, его номинальные характеристики будут «снижены». По этой причине производители выключателя предоставляют таблицы, в которых указаны факторы, которые следует применять при температурах, отличных от эталонной температуры выключателя. Из типичных примеров таких таблиц (см. Рис. h49) можно заметить, что более низкая температура, чем эталонное значение, приводит к повышению номинальной мощности автоматического выключателя. Кроме того, небольшие выключатели модульного типа, устанавливаемые рядом, как обычно показано на рис. , рис. h34, обычно устанавливаются в небольшой закрытый металлический корпус.В этой ситуации взаимный нагрев при прохождении нормальных токов нагрузки обычно требует их снижения в 0,8 раза.

Пример

Какой рейтинг (In) следует выбрать для iC60 N?

  • Защита цепи, максимальный ток нагрузки которой оценивается в 34 А
  • Устанавливается бок о бок с другими выключателями в закрытой распределительной коробке
  • При температуре окружающей среды 60 ° C

Автоматический выключатель iC60N с номиналом 40 А будет снижен до 38.2 А в окружающем воздухе при 60 ° C (см. Рисунок h49). Однако, чтобы обеспечить взаимный нагрев в замкнутом пространстве, необходимо использовать указанный выше коэффициент 0,8, так что 38,2 x 0,8 = 30,5 A, что не подходит для нагрузки 34 A.

A 50 A автоматический выключатель, следовательно, будет выбран, что дает (пониженный) номинальный ток 47,6 x 0,8 = 38 A.

Компенсированные термомагнитные расцепители

Эти расцепители включают биметаллическую компенсирующую полосу, которая позволяет регулировать уставку тока срабатывания при перегрузке (Ir или Irth) в заданном диапазоне независимо от температуры окружающей среды.

Например:

  • В некоторых странах система TT является стандартной для низковольтных распределительных систем, а бытовые (и аналогичные) установки защищены на рабочем месте автоматическим выключателем, предоставленным энергоснабжающим органом. Этот выключатель, помимо защиты от опасности косвенного прикосновения, срабатывает при перегрузке; в этом случае, если потребитель превышает текущий уровень, указанный в его договоре поставки с энергетическим органом. Автоматический выключатель (≤ 60 A) рассчитан на диапазон температур от — 5 ° C до + 40 ° C.
  • Автоматические выключатели
  • LV на номиналы ≤ 630 A обычно оснащаются компенсируемыми расцепителями для этого диапазона (от — 5 ° C до + 40 ° C)

Примеры таблиц, в которых приведены значения пониженного / повышенного тока в зависимости от температуры для цепи -выключатели с некомпенсированными тепловыми расцепителями

Тепловые характеристики автоматического выключателя

приведены с учетом сечения и типа проводника (Cu или Al) в соответствии с IEC60947-1, таблицы 9 и 10 и IEC60898-1 и 2, таблица 10.

iC60 (МЭК 60947-2)

Рис.h48 — iC60 (IEC 60947-2) — значения пониженного / повышенного тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
0,5 0,58 0,57 0.56 0,55 0,54 0,53 0,52 0,51 0,5 0,49 0,48 0,47 0,45
1 1,16 1,14 1,12 1,1 1,08 1,06 1,04 1,02 1 0,98 0,96 0,93 0,91
2 2.4 2,36 2,31 2,26 2,21 2,16 2,11 2,05 2 1,94 1,89 1,83 1,76
3 3,62 3,55 3,48 3,4 3,32 3,25 3,17 3,08 3 2,91 2,82 2,73 2,64
4 4.83 4,74 4,64 4,54 4,44 4,33 4,22 4,11 4 3,88 3,76 3,64 3,51
6 7,31 7,16 7,01 6,85 6,69 6,52 6,35 6,18 6 5,81 5,62 5,43 5,22
10 11.7 11,5 11,3 11,1 10,9 10,7 10,5 10,2 10 9,8 9,5 9,3 9
13 15,1 14,8 14,6 14,3 14,1 13,8 13,6 13,3 13 12,7 12,4 12,1 11,8
16 18.6 18,3 18 17,7 17,3 17 16,7 16,3 16 15,7 15,3 14,9 14,5
20 23 22,7 22,3 21,9 21,6 21,2 20,8 20,4 20 19,6 19,2 18,7 18,3
25 28.5 28,1 27,6 27,2 26,8 26,4 25,9 25,5 25 24,5 24,1 23,6 23,1
32 37,1 36,5 35,9 35,3 34,6 34 33,3 32,7 32 31,3 30,6 29,9 29,1
40 46.4 45,6 44,9 44,1 43,3 42,5 41,7 40,9 40 39,1 38,2 37,3 36,4
50 58,7 57,7 56,7 55,6 54,5 53,4 52,3 51,2 50 48,8 47,6 46,3 45
63 74.9 73,5 72,1 70,7 69,2 67,7 66,2 64,6 63 61,4 59,7 57,9 56,1

Compact NSX100-250 с расцепителями TM-D или TM-G

Рис. H49 — Compact NSX100-250, оборудованный расцепителями TM-D или TM-G — номинальные / пониженные значения тока в зависимости от температуры окружающей среды

Рейтинг Температура окружающей среды (° C)
(А) 10 15 20 25 30 35 40 45 50 55 60 65 70
16 18.4 18,7 18 18 17 16,6 16 15,6 15,2 14,8 14,5 14 13,8
25 28,8 28 27,5 25 26,3 25,6 25 24,5 24 23,5 23 22 21
32 36.8 36 35,2 34,4 33,6 32,8 32 31,3 30,5 30 29,5 29 28,5
40 46 45 44 43 42 41 40 39 38 37 36 35 34
50 57.5 56 55 54 52,5 51 50 49 48 47 46 45 44
63 72 71 69 68 66 65 63 61,5 60 58 57 55 54
80 92 90 88 86 84 82 80 78 76 74 72 70 68
100 115 113 110 108 105 103 100 97.5 95 92,5 90 87,5 85
125 144 141 138 134 131 128 125 122 119 116 113 109 106
160 184 180 176 172 168 164 160 156 152 148 144 140 136
200 230 225 220 215 210 205 200 195 190 185 180 175 170
250 288 281 277 269 263 256 250 244 238 231 225 219 213

Электронные расцепители

Электронные расцепители очень стабильны при изменении температурных уровней.

Важным преимуществом электронных расцепителей является их стабильная работа в изменяющихся температурных условиях.Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому производители обычно предоставляют рабочую диаграмму, связывающую максимальные значения допустимых уровней тока срабатывания с температурой окружающей среды (см. , рис. h50).

Кроме того, электронные расцепители могут предоставлять информацию, которая может использоваться для лучшего управления распределением электроэнергии, включая энергоэффективность и качество электроэнергии.

Рис. H50 — Снижение номинальных характеристик автоматического выключателя Masterpact MTZ2 в зависимости от температуры

Тип выдвижения Masterpact МТЗ2 Н1 — х2 — х3 — х4 -L1 -х20
08 10 12 16 20 [а] 20 [b]
Температура окружающей среды (° C)
Спереди или сзади по горизонтали 40 800 1000 1250 1600 2000 2000
45
50
55
60 1900
65 1830 1950
70 1520 1750 1900
Задняя вертикальная 40 800 1000 1250 1600 2000 2000
45
50
55
60
65
70
  1. ^ Тип: h2 / h3 / h4
  2. ^ Тип: L1

Выбор мгновенного или кратковременного порога срабатывания срабатывания

На рисунке h51 ниже приведены основные характеристики расцепителей мгновенного действия или с кратковременной задержкой.

Рис. H51 — Различные устройства отключения, мгновенные или с кратковременной задержкой

Тип Расцепитель Приложения
Низкое значение

тип B

  • Источники, вырабатывающие низкие уровни тока короткого замыкания (резервные генераторы)
  • Длинные отрезки линии или кабеля
Стандартная настройка

тип C

  • Защита цепей: общий случай
Высокая установка

типа D или K

  • Защита цепей с высокими начальными уровнями переходного тока (например,грамм. двигатели, трансформаторы, резистивные нагрузки)
12 дюймов

типа МА

  • Защита двигателей с помощью контакторов и защита от перегрузки

Выбор автоматического выключателя в соответствии с предполагаемым током короткого замыкания

Установка низковольтного выключателя требует, чтобы его отключающая способность при коротком замыкании (или отключающая способность автоматического выключателя вместе с соответствующим устройством) была равна или превышала расчетный ожидаемый ток короткого замыкания в точке его установки.

Установка автоматического выключателя в установке низкого напряжения должна соответствовать одному из двух следующих условий:

  • Либо иметь номинальную отключающую способность при коротком замыкании Icu (или Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для точки установки, либо
  • Если это не так, быть связанным с другим устройством, расположенным выше по потоку и имеющим требуемую отключающую способность при коротком замыкании.

Во втором случае характеристики двух устройств должны быть согласованы таким образом, чтобы энергия, разрешенная для прохождения через вышестоящее устройство, не должна превышать ту, которую может выдержать последующее устройство и все связанные с ним кабели, провода и другие компоненты, без каких-либо повреждений.Этот метод с успехом применяется в:

  • Объединения предохранителей и автоматических выключателей
  • Объединения токоограничивающих автоматических выключателей и стандартных автоматических выключателей.

Метод известен как «каскадирование» (см. «Координация между автоматическими выключателями»).

Автоматические выключатели для IT-систем

В системе IT автоматические выключатели могут столкнуться с необычной ситуацией, называемой двойным замыканием на землю, когда второе замыкание на землю происходит в присутствии первого замыкания на противоположной стороне автоматического выключателя (см. Рисунок h52).

В этом случае автоматический выключатель должен устранить короткое замыкание с помощью межфазного напряжения на одном полюсе вместо напряжения между фазой и нейтралью. В такой ситуации отключающая способность выключателя может быть изменена.

Приложение H стандарта IEC60947-2 рассматривает эту ситуацию, и автоматический выключатель, используемый в системе IT, должен быть испытан в соответствии с этим приложением.

Если автоматический выключатель не был испытан в соответствии с настоящим приложением, на паспортной табличке должна использоваться маркировка символом.

Регламент некоторых стран может добавлять дополнительные требования.

Рис. H52 — Ситуация двойного замыкания на землю

Выбор автоматических выключателей в качестве главных вводов и фидеров

Установка с питанием от одного трансформатора

Если трансформатор расположен на подстанции потребителя, согласно определенным национальным стандартам требуется автоматический выключатель низкого напряжения, в котором разомкнутые контакты хорошо видны, например: выкатной автоматический выключатель.

Пример

(см. рис. х53)

Какой тип автоматического выключателя подходит для главного выключателя установки, питаемой от трехфазного трансформатора среднего / низкого напряжения (400 В) 250 кВА на подстанции потребителя?

В трансформаторе = 360 А

Isc (3 фазы) = 9 кА

Компактный NSX400N с регулируемым диапазоном отключающих устройств от 160 до 400 А и отключающей способностью при коротком замыкании (Icu) 50 кА будет подходящим выбором для этой работы.

Рис. H53 — Пример трансформатора на подстанции потребителя

Установка с питанием от нескольких трансформаторов параллельно

(см. рис. х54)

  • Каждый выключатель фидера CBP должен быть способен отключать полный ток короткого замыкания от всех трансформаторов, подключенных к шинам: Isc1 + Isc2 + Isc3
  • Главные автоматические выключатели CBM должны выдерживать максимальный ток короткого замыкания (например) Isc2 + Isc3 только для короткого замыкания, расположенного на входной стороне CBM1.

Из этих соображений будет видно, что автоматический выключатель наименьшего трансформатора будет подвергаться наибольшему уровню тока короткого замыкания в этих обстоятельствах, в то время как автоматический выключатель наибольшего трансформатора пройдет наименьший уровень короткого замыкания. -схемный ток

  • Номинальные параметры CBM должны выбираться в соответствии с номинальными значениями кВА соответствующих трансформаторов.

Рис.h54 — Трансформаторы параллельно

Примечание: Существенные условия для успешной работы трехфазных трансформаторов, включенных параллельно, можно резюмировать следующим образом:

1. фазовый сдвиг напряжений от первичного к вторичному должен быть одинаковым для всех параллельно включенных устройств.

2. Соотношение напряжения холостого хода между первичной и вторичной обмотками должно быть одинаковым во всех блоках.

3. Напряжение полного сопротивления короткого замыкания (Zsc%) должно быть одинаковым для всех блоков.

Например, трансформатор 750 кВА с Zsc = 6% будет правильно разделять нагрузку с трансформатором на 1000 кВА с Zsc 6%, т.е.е. трансформаторы будут загружены автоматически пропорционально их номинальным значениям в кВА. Для трансформаторов, имеющих коэффициент мощности более 2 кВА, параллельная работа не рекомендуется.

На рисунке h56 для наиболее обычного расположения (2 или 3 трансформатора с одинаковой мощностью кВА) указаны максимальные токи короткого замыкания, которым подвергаются основные и главные выключатели (CBM и CBP соответственно, в , рисунок h55). В его основе лежат следующие гипотезы:

  • Мощность трехфазного короткого замыкания на стороне СН трансформатора составляет 500 МВА
  • Трансформаторы стандартные 20/0.Распределительные блоки 4 кВ, указанные в перечне
  • Кабели от каждого трансформатора к его низковольтному выключателю состоят из 5 метров одножильных проводов
  • Между каждым CBM входящей цепи и каждым CBP исходящей цепи есть 1 метр сборной шины
  • Распределительное устройство устанавливается в закрытом распределительном щите, монтируемом на полу, при температуре окружающего воздуха 30 ° C

Пример

(см. Рисунок h55)

Выбор автоматического выключателя для режима CBM

Для трансформатора 800 кВА In ​​= 1155 А; Icu (минимум) = 38 кА (из Рисунок h56), CBM, указанный в таблице, представляет собой Compact NS1250N (Icu = 50 кА)

Выбор автоматического выключателя для режима CBP

С.c. Отключающая способность (Icu), необходимая для этих автоматических выключателей, указана на рис. , рисунок h56, как 56 кА.

Рекомендуемым выбором для трех исходящих цепей 1, 2 и 3 будут токоограничивающие автоматические выключатели типов NSX400 H, NSX250 H и NSX100 H. Номинальное значение Icu в каждом случае = 70 кА.

Эти автоматические выключатели обладают следующими преимуществами:

  • Полная селективность с выключателями на входе (CBM)
  • Использование «каскадного» метода с соответствующей экономией для всех последующих компонентов

Рис.h55 — Трансформаторы параллельно

Рис. H56 — Максимальные значения тока короткого замыкания, прерываемые автоматическими выключателями ввода и фидера (CBM и CBP соответственно), для нескольких трансформаторов, включенных параллельно

Количество и номинальные значения кВА трансформаторов 20 / 0,4 кВ Минимальная отключающая способность S.C главных выключателей (Icu) кА Общая селективность главных автоматических выключателей (CBM) с исходящими автоматическими выключателями (CBP) Минимальная отключающая способность основного выключателя (Icu) кА Номинальный ток In главного выключателя (CPB) 250A
2 х 400 14 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 28 NSX100-630F
3 х 400 28 МТЗ1 08х2 / МТЗ2 08Н1 / НС800Н 42 NSX100-630N
2 х 630 22 МТЗ1 10х2 / МТЗ2 10Н1 / НС1000Н 44 NSX100-630N
3 х 630 44 МТЗ1 10х3 / МТЗ2 10Н1 / НС1000Н 66 NSX100-630S
2 х 800 19 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 38 NSX100-630N
3 х 800 38 МТЗ1 12х2 / МТЗ2 12Н1 / НС1250Н 57 NSX100-630H
2 х 1000 23 МТЗ1 16х2 / МТЗ2 16Н1 / НС1600Н 46 NSX100-630N
3 х 1000 46 МТЗ1 16х3 / МТЗ2 16х2 / НС1600Н 69 NSX100-630H
2 х 1250 29 МТЗ2 20Н1 / НС2000Н 58 NSX100-630H
3 X 1250 58 МТЗ2 20х2 / НС2000Н 87 NSX100-630S
2 х 1600 36 МТЗ2 25Н1 / НС2500Н 72 NSX100-630S
3 х 1600 72 МТЗ2 25х3 / НС2500Н 108 NSX100-630L
2 х 2000 45 МТЗ2 32х2 / НС3200Н 90 NSX100-630S
3 X 2000 90 МТЗ2 32х3 135 NSX100-630L

Выбор выключателей фидера и выключателей конечного контура

Уровни тока короткого замыкания в любой точке установки можно узнать из таблиц.

Использование таблицы G42

Из этой таблицы можно быстро определить значение трехфазного тока короткого замыкания для любой точки установки, зная:

  • Значение тока короткого замыкания в точке перед током, предназначенным для соответствующего выключателя
  • Длина, гр.s.a., и состав проводников между двумя точками

Затем может быть выбран автоматический выключатель, рассчитанный на отключающую способность при коротком замыкании, превышающую табличное значение.

Детальный расчет уровня тока короткого замыкания

Для более точного расчета тока короткого замыкания, в частности, когда отключающая способность выключателя по току короткого замыкания немного меньше значения, указанного в таблице, необходимо использовать метод, указанный в разделе Ток короткого замыкания. .

Двухполюсные выключатели (для фазы и нейтрали) только с одним защищенным полюсом

Эти выключатели обычно снабжены устройством защиты от перегрузки по току только на фазном полюсе и могут использоваться в схемах TT, TN-S и IT. Однако в схеме ИТ должны соблюдаться следующие условия:

  • Условие (B) таблицы в Рисунок G68 для защиты нейтрального проводника от перегрузки по току в случае двойного замыкания
  • Ток отключения при коротком замыкании: двухполюсный выключатель фаза-нейтраль должен быть способен отключать на одном полюсе (при межфазном напряжении) ток двойного короткого замыкания
  • Защита от непрямого прикосновения: эта защита обеспечивается согласно правилам для схем IT

Подбор автоматического выключателя | EC&M

Благодарим вас за посещение одной из наших самых популярных классических статей.Если вы хотите получить обновленную информацию по этой теме, ознакомьтесь с недавно опубликованной статьей «
Размер устройства защиты от перегрузки по току ».

Один из наиболее часто задаваемых вопросов: «Как выбрать автоматический выключатель?» Часто неправильно понимаемый факт об автоматических выключателях (CB) связан с процентом нагрузки, разрешенной NEC и конструкцией выключателя, и почему они могут отличаться. Давайте исследуем оба аспекта.

CB Дизайн

Автоматический выключатель спроектирован и рассчитан на то, чтобы выдерживать 100% номинального тока в течение неопределенного периода времени в стандартных условиях испытаний.Эти условия, согласно UL 489, стандарту безопасности лабораторий Underwriters для автоматических выключателей в литом корпусе и корпусов автоматических выключателей, включают установку выключателя на открытом воздухе (т. Е. Без корпуса), где температура окружающей среды поддерживается на уровне 40 [градусов] C ( приблизительно 104 [градусов] F). В этих условиях выключатели в литом корпусе не должны срабатывать при номинальном токе.

Тем не менее, выключатель чаще всего применяется в оборудовании на 80% от его номинального тока в соответствии с NEC Sec. 384-16 (с). Если вы понимаете, почему существует это требование, вы сможете правильно применять CB.

Характеристики отключения CB

Кривые срабатывания выключателя

показывают, сколько времени требуется для срабатывания определенных выключателей в зависимости от уровня тока. На рис. 1 представлена ​​типичная кривая для термомагнитного выключателя. Изогнутая часть вверху показывает время, необходимое выключателю для отключения при перегрузке. Состояние перегрузки вызовет накопление тепла вокруг пути тока, внутри выключателя, а также вдоль силовых проводов. Это тепло, которое генерируется током, на самом деле вызывает отключение выключателя в этой области, а не просто величина тока.Считается, что эта часть кривой имеет обратнозависимую временную характеристику, что означает, что выключатель сработает за меньшее время при более высоких уровнях протекания тока.

Поскольку путь прохождения тока (включая как выключатель, так и проводник) реагирует на тепло, общая рабочая температура оборудования становится фактором при выборе выключателя в корпусе.

Другие факторы, которые могут повлиять на рабочую температуру этого оборудования, включают:

  • Размер и расположение корпуса;
  • В одном корпусе размещено более одного токонесущего устройства;
  • Уровень тока, который несет каждое устройство; и
  • Условия окружающей среды в зоне установки оборудования.

Следовательно, простая разработка автоматического выключателя на 100% номинального тока решает лишь часть проблемы. Оборудование должно быть в состоянии безопасно выдерживать тепло, выделяемое всеми источниками, без превышения температурных пределов, установленных в стандарте испытаний продукции. Оба эти фактора учитываются правилами калибровки, установленными NEC.

1996 NEC

NEC 1996 года признает, что на устройства защиты от сверхтоков будет влиять тепло в системе.Таким образом, он определяет концепцию непрерывных нагрузок и правило 80%, чтобы попытаться компенсировать влияние тепла в системе при определении размеров выключателя.

Непрерывные нагрузки. Чтобы лучше понять размерные аспекты CB, вы должны сначала четко понять концепцию непрерывных нагрузок. В ст. 100, NEC определяет непрерывную нагрузку как «нагрузку, при которой ожидается, что максимальный ток будет продолжаться в течение трех часов или более». Вам очень важно понимать, что это нагрузка при максимальном токе без перебоев в течение как минимум трех часов.Офисное освещение обычно соответствует этому критерию.

Правила определения размеров NEC. П. 210-22 (c), 220-3 (a), 220-10 (b) и 384-16 (c) все относятся к правилам определения размеров для устройств защиты от сверхтоков (OCPD). Первые три указывают одно и то же требование:

.

Размер OCPD = 100% периодической нагрузки + 125% продолжительной нагрузки.

сек. 384-16 (c) имеет то же требование, за исключением того, что оно указано в терминах загрузки OCPD. Это правило гласит, что OCPD может быть загружен только до 80% от своего номинала для непрерывных нагрузок.Помните, что 80% — это величина, обратная 125% (0,80 = 1 [деленное на] 1,25), и поэтому правила действительно идентичны по своим конечным требованиям.

Внимательно прочтите правило; 125% -ный размер OCPD (или 80% -ная нагрузка) применим только тогда, когда задействованы постоянные нагрузки. CB и другие OCPD могут быть рассчитаны на 100% от их номинала для приложений с непостоянной нагрузкой.

устройства со 100% -ным рейтингом. NEC распознает полные сборки (включая OCPD), которые указаны для работы на 100% от их номинальных значений для продолжительных нагрузок.Это означает, что оборудование прошло дополнительные испытания, чтобы убедиться, что оно может выдерживать дополнительный нагрев, связанный с этим уровнем эксплуатации.

Автоматический выключатель со 100% номинальными характеристиками и оборудование конечного использования были испытаны для подтверждения того, что дополнительное тепло, генерируемое в условиях 100% непрерывной нагрузки, безопасно рассеивается. Другие спецификации оборудования также обусловлены необходимостью рассеивания тепла, связанного с уровнем нагрева, достигнутым во время 100% номинальных испытаний. В случаях, когда температура на клеммах проводки выключателя превышает 50 [градусов] C во время 100% номинального испытания, UL 489 требует использования изолированного провода 90 [градусов] C (рассчитанного на допустимую нагрузку 75 [градусов] C) с этими выключателями. и CB должен быть отмечен производителем как таковой.UL 489 также определяет минимальный размер корпуса и требования к вентиляции, если это необходимо для отвода тепла. CB, успешно прошедший эти дополнительные испытания, все еще не включен в список для применения со 100% -ным рейтингом для непрерывной нагрузки, если он не отмечен как таковой производителем.

Таким образом, ЦБ имеет либо стандартный рейтинг (80%), либо рейтинг 100%. Стандартный рейтинг зависит от правил NEC, которые мы только что обсудили. Автоматические выключатели со 100% -ным номиналом разрешается непрерывно нагружать с полным номиналом, пока сборка указана в списке и проводники подключены должным образом.

CB Примеры размеров

Ниже приведены примеры правил определения размеров.

Пример 1: 50 А непрерывная нагрузка и 125 А прерывистая нагрузка.

OCPD = 100% прерывистая нагрузка + 125% продолжительная нагрузка = (1,00 x 125A) + (1,25 x 50A) = 187,5A

Следовательно, требуется OCPD на 200 А. Если выбран автоматический выключатель со 100% -ным номиналом, допустимым является номинал 175А (125А + 50А).

Пример 2: Непрерывная нагрузка 300 А.

Допускается устройство на 300 А; устройство со 100% номиналом не требуется, поскольку нагрузка непостоянна.

Пример 3: 200A непрерывная нагрузка.

OCPD = 100% прерывистая нагрузка + 125% продолжительная нагрузка = (1,00 x 0A) + (1,25 x 200A) = 250A

Следовательно, нужен прибор на 250А. Если выбран автоматический выключатель со 100% -ным номиналом, допускается номинальный ток 200А.

Пример 4: 16 А непрерывный и 30 А прерывистый.

OCPD = 100% прерывистая нагрузка + 125% продолжительная нагрузка = (1,00 x 30A) + (1,25 x 16A) = 50A

Следовательно, можно выбрать устройство на 50 А.Хотя устройства со 100% -ным номиналом обычно недоступны для таких небольших размеров, допустимый номинал все равно будет 50 А (16 А + 30 А = 46 А; округлено до 50 А).

Джим Поли — менеджер по отраслевым стандартам, а Сэнди Янг — специалист по продукции для автоматических выключателей в Square D Co., Лексингтон, штат Кентукки, и Cedar Rapids, штат Айова, соответственно.

Рекомендации по выбору автоматических выключателей

— Руководство по выбору автоматических выключателей

Сегодня мы поговорим об очень важном и популярном элементе в любой электрической системе.Его значение распространяется на электростанции, дома и небольшие квартиры.

Мы не можем доставить электроэнергию на любую нагрузку; автоматический выключатель. Поэтому Яссер, один из участников нашего блога сообщества, прислал нам это руководство, в котором он отмечает некоторые моменты по этому поводу. Наслаждаться!

Важность автоматических выключателей

Автоматические выключатели используются в:

  1. На электростанциях и подстанциях они защищают основное оборудование от перегрузки, короткого замыкания и, следовательно, частичного или полного повреждения, которое стоит очень дорого.
  2. В ответвленных цепях они защищают в основном кабели от перегрузки и пробоя, а также в некоторых случаях защищают нагрузку от перегрузки.
  3. Они защищают вас от тока утечки в случае автоматических выключателей утечки на землю. Как и в случае прикосновения к проводу под напряжением, прерыватель определяет ток утечки через ваше тело на землю, а затем отключает цепь.

Типы автоматических выключателей

Есть много типов CB, вот некоторые из них:

  1. Миниатюрный автоматический выключатель: для применений с низким энергопотреблением и низким уровнем короткого замыкания.
  2. Автоматический выключатель в литом корпусе
  3. : выдерживает более высокую мощность до 630 А, а также может достигать 100 кА в режиме короткого замыкания.
  4. Воздушные автоматические выключатели: используются во многих системах низкого напряжения и называются воздухом, поскольку изолирующая среда — воздух.
  5. Вакуумный автоматический выключатель
  6. : может выдерживать более высокие напряжения, чем воздух, поскольку он реализует вакуум в качестве изолирующей среды и используется в системах среднего напряжения.
  7. Масляный автоматический выключатель
  8. : используется при среднем и высоком напряжении, поскольку масло является очень прочной изолирующей средой и обладает хорошими характеристиками при гашении дуги.
  9. Автоматический выключатель
  10. SF6: наиболее распространенный тип, используемый в сетях среднего и высокого напряжения благодаря высокой диэлектрической прочности SF6, термической стабильности и теплопроводности.

Рисунок 1 (слева): Воздушный автоматический выключатель / Рисунок 2 (в центре): Автоматический выключатель в литом корпусе / Рисунок 3 (справа): Автоматический выключатель SF6

Поскольку мы вкратце показали общие типы автоматических выключателей и где они используются, теперь мы обсудим, как выбрать автоматический выключатель из диапазона среднего и низкого напряжения.Но чтобы сделать это правильно, вам нужно знать о некоторых аспектах, которые показаны ниже.

  • Класс нагрузки:
  • 1. Динамическая нагрузка: уникальным аспектом этого типа является действующее электромагнитное поле. Очевидно, мы говорим о двигателях и трансформаторах, потребляющих ток выше номинального при запуске.
    2. Статическая нагрузка: обычно он потребляет номинальный ток при работе на полной мощности и никогда не потребляет больше, чем он. В основном это резистивная нагрузка, например, нагреватели.

  • Кривая отключения — это соотношение между временем отключения и током повреждения, и существует много их типов. Вкратце это:
  • 1. Тип B: подходит для резистивных нагрузок, так как время срабатывания магнитного поля в 5 раз превышает номинальный ток.
    2. Тип C: подходит для большинства нагрузок, так как сочетает в себе преимущество длительного отключения при перегрузке, а время срабатывания магнитного поля примерно в 8 раз превышает номинальный ток.
    3. Тип B: подходит для резистивных нагрузок, поскольку время срабатывания магнитного поля в 5 раз превышает номинальный ток.
    4. Тип D: подходит для магнитных нагрузок, имеющих пусковой ток, поэтому выключатель не должен срабатывать во время пуска. Время срабатывания магнитного поля примерно в 15 раз превышает номинальный ток.
    5. Для автоматических выключателей в литом корпусе и других типов кривую срабатывания можно изменить, задав некоторые значения для управления защитой от перегрузки и магнитным срабатыванием.

Рисунок 4: Кривые срабатывания выключателя

Этапы выбора автоматического выключателя

  1. Определите тип нагрузки, чтобы узнать, какой выключатель подходит для вашего применения.
  2. В случае нагрузок с пусковым током следует учитывать, что ток срабатывания магнитного выключателя превышает пусковой ток.
  3. В случае защиты источников (например, ИБП) вы должны выбрать автоматический выключатель с тем же значением, что и номинальный ток источника.
  4. В случае защиты нагрузки номинальный ток автоматического выключателя будет в 1,25 раза больше номинального тока нагрузки, чтобы учесть случаи перегрузки.
  5. Расчет уровня короткого замыкания на выключателе необходим для определения его значения, чтобы выключатель не вышел из строя в случае неисправности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *