Устройства контроля погасания горелки для газовых приборов. Газовое оборудование значительно улучшает качество нашей жизни — это возможность приготовить пищу и обогреть жильё, но газ требует к себе повышенного внимания. При случайном погасании пламени конфорки газовой плиты или горелки отопительного котла — а это может случиться, когда конфорку заливает кипящая жидкость из кастрюли или пламя задуло сквозняком — газ может заполнить помещение и достаточно небольшой искры, чтобы случился взрыв. Этого не случится, если ваши газовые приборы оборудованы системой безопасности Gas Control, которая состоит из термоэлектрического датчика, располагаемого в пламени горелки и защитного электромагнитного клапана. При наличии пламени на горелке термоэлектрический датчик, а попросту термопара, вырабатывает небольшое напряжение, которое подаётся на катушку электромагнитного клапана и обеспечивает его удержание в открытом положении. При погасании пламени термопара остывает, ток прекращается и клапан отпускает, перекрывая газ. Некоторые модели газового оборудования содержат схемы автоматического повторного розжига горелки при её погасании, но после нескольких попыток такие схемы автоматически отключаются, т.к. такой авторозжиг может повлечь большие неприятности. Если газовая плита не оснащена заводской системой безопасности — изготовить её в домашних условиях вряд ли удастся. Можно только оснастить её системой контроля пламени с выдачей предупредительной сигнализации. Для контроля пламени в котлах промышленных котельных чаще всего используют инфракрасные или ультрафиолетовые фотодатчики и ионизационные контрольные электроды. Хотя схема с использованием фотодатчика наиболее универсальна (контролирует горение любых видов топлива), она мало подходит для «домашнего» применения, т.к. электрическая схема достаточна сложна. Фотодатчик не должен реагировать на иные источники излучения, кроме пламени горелки и чувствительность его не должна меняться от температуры и прямой засветки от посторонних источников. Чтобы этого не случилось, в схеме используется глубокая АРУ, стабилизация рабочей точки фотодатчика, а также низкочастотный полосовой фильтр, пропускающий только пульсации сигнала, формируемые языками пламени. Для самостоятельного изготовления гораздо лучше подходит ионизационный метод. Он широко используется в промышленных котельных, работающих на газе. Устройство представляет собой контрольный электрод из нихромовой проволоки диаметром 2 … 3 мм, закреплённый на изолирующей подставке из керамики или фторопласта, недалеко от горелки. Кончик электрода должен находиться в верхней трети языка пламени, но не должен касаться дна кастрюль. На контрольный электрод подаётся абсолютно безопасный, очень слабый сигнал переменного тока напряжением 220 В. При горении газового пламени происходит ионизация частиц газа и в зоне контрольного электрода , когда на нём положительная полуволна напряжения, тяжёлые положительно заряженные частицы опускаются к горелке, а электроны устремляются к электроду. В цепи протекает очень слабый электрический ток . При отрицательной полуволне тока в цепи нет. Из-за несимметричности токов на контрольном электроде возникает слабый отрицательный потенциал напряжением 3 … 8 В, который усиливается усилителем на полевом транзисторе и используется для сигнализации наличия пламени. Схема одного из устройств приведено на рисунке:
На основе этой схемы можно построить различные устройства контроля пламени и автоматической отсечки газа. Если в схему добавить триггер — можно автоматизировать запуск схемы сигнализации погасания пламени при первом его появлении . Добавив в схему таймер, можно автоматизировать начало отсчёта времени приготовления продукта или периодически включать напоминающий звуковой сигнал для забывчивых людей. Автор разрабатывал множество подобных устройств, но ввиду их относительной сложности они не здесь приводятся . Вернуться в начало темы:
1. Схема электрического поджига с симистором. 2. Схемы электроподжига с тиристором. 3. Вариант схемы электроподжига на тиристоре . 4. Схема электроподжига с использованием p-n-p транзистора. 5. Схема электроподжига с использованием динистора.
|
Уважаемые посетители! Все материалы сайта в случае их некоммерческого использования предоставляются бесплатно, хотя автор затрачивает достаточно большие средства на их обновление расширение и размещение. а автору позволит частично компенсировать собственные затраты чтобы уделять Вам больше внимания. ВНИМАНИЕ! Вам нужно разработать сложное электронное устройство? Тогда Вам сюда…
|
kravitnik.narod.ru
Контроль наличия пламени | КИПиА от А до Я
Тепловые агрегаты, работающие на природном газе (печи, котлы, стенды нагрева и т.п.) должны оборудоваться системой контроля наличия пламени. В процессе работы тепловых агрегатов возможны ситуации, при которой пламя горелки (факел) потухнет, но газ будет продолжать поступать во внутреннее пространство агрегата и окружающую среду и при наличии искры или открытого огня возможно воспламенение этого газа и даже взрыв. Наиболее часто потухание пламени происходит из-за отрыва факела.
Наличие пламени контролируют либо с помощью ионизационного электрода, либо с помощью фотодатчика. Как правило, с помощью ионизационного электрода контролируют горение запальника, который, в свою очередь, в случае необходимости воспламенит основную горелку. Фотодатчиками контролируют пламя основной горелки. Фотодатчик для контроля пламени запальника не применяют ввиду малого размера пламени запальника. Применение ионизационного электрода для контроля пламени основной горелки не рационально, так как электрод, помещенный в пламя основной горелки будет быстро обгорать.
Фотодатчики различаются по чувствительности к различной длине волны светового потока. Одни фотодатчики реагируют только на видимый и инфракрасный спектр светового потока от горящего пламени, другие воспринимают только его ультрафиолетовую составляющую. Самым распространенным фотодатчиком, реагирующим на видимую составляющую светового потока, является датчик ФДЧ.
Световой поток воспринимается фоторезистором датчика, и после усиления преобразуется либо в выходной сигнал 0-10В, пропорциональный освещенности, либо подается на обмотку реле, контакты которого замыкаются, если освещенность превышает установленный порог. Тип выходного сигнала — сигнал 0-10В или контакты реле — определяется модификацией ФДЧ. Фотодатчик ФДЧ обычно работает с вторичным прибором Ф34. Вторичный прибор обеспечивает питание ФДЧ напряжением +27В, на нем также выставляются пороги срабатывания в том случае, если используется ФДЧ с токовым выходом. Кроме того, в зависимости от модификации, Ф34 может контролировать сигнал от ионизационного электрода запальной горелки, управлять розжигом и работой горелки с помощью встроенных реле.
К недостаткам фотодатчиков видимого света можно отнести то, что они реагируют на любой источник света — солнечный свет, свет фонарика, световое излучение нагретых элементов конструкции, футеровки сталеразливочных ковшей и т.п. Это ограничивает их применение, например в стендах нагрева, так как ложные срабатывания от светящейся разогретой футеровки ковшей блокируют работу автоматики (ошибка «ложное пламя»). Наиболее широко ФДЧ применяются на печах сушки песка, ферросплавов и т.п. — там где температура нагрева редко превышает 300-400°С, а значит отсутствует свечение разогретых элементов конструкции печи.
Отличительной особенностью ультрафиолетовых фотодатчиков (УФД), например UVS-1 фирмы Kromschroeder, является то, что они реагируют только на ультрафиолетовую составляющую светового потока, излучаемого пламенем горелки. В световом потоке от разогретых тел, элементов конструкций печей, футеровки ковшей ультрафиолетовая составляющая мала. Поэтому к посторонней засветке датчик «равнодушен», как и к солнечному свету.
Основой этого датчика является вакуумная лампа — электронный фотоумножитель. Как правило, питаются эти датчики напряжением 220В и имеют токовый выходной сигнал, который меняется от 0 до нескольких десятков микроампер. К недостаткам ультрафиолетовых датчиков можно отнести то, что вакуумная лампа фотоумножителя имеет ограниченный срок службы. Через пару лет эксплуатации лампа теряет свою эмиссионную способность и датчик перестает работать. Сигнал с УФД передается на автомат горения серии IFS, функции которого аналогичны функциям Ф34.
Фотодатчики должны иметь, так сказать, визуальный контакт с пламенем горелки, поэтому они расположенны в непосредственной близости от него. Как правило, они распологаются со стороны горелки под углом 20-30° к ее оси. Из-за этого они подвержены сильному нагреву тепловым излучением от стенок агрегата и радиационному нагреву через визирное окно. Для зашиты фотодатчика от перегрева применяют защитные стекла и принудительный обдув. Защитные стекла производятся из жаропрочного кварцевого стекла и устанавливаются на некотором удалении перед визирным окном фотодатчика. Обдув датчика осуществляется либо вентиляторным воздухом (если горелка установки работает на вентиляторном воздухе), либо сжатым воздухом пониженного давления. Подаваемый объем воздуха осуществляет охлаждение фотодатчика не только за счет процессов теплоотдачи, но и из-за того, что вокруг него создается область повышенного давления, которая как бы отталкивает горячий воздух, не давая ему контактировать с датчиком.
Контроль наличия пламени запальника в большинстве случаев осуществляется ионизационным электродом. Принцип контроля пламени по ионизации основан на том, что при сжигании газа образуется множество свободных электронов и ионов. Эти частицы «притягиваются» к ионизационному электроду и вызывают протекание тока ионизации величиной в десятки микроампер. Ионизационный электрод соединяется с входом прибора контроля наличия ионизации (автоматом горения). Если при горении пламени запальника образуется достаточное количество свободных электронов и отрицательных ионов, то в автомате горения срабатывает пороговое устройство разрешающее работу (или розжиг) основной горелки. В случае если интенсивность ионизации падает ниже определенного уровня, то основная горелка отключается даже в том случае, если она работала нормально. На размещенном ниже видео показано, как благодаря нагреву воздуха между обкладками конденсатора (в нашем случае одна обкладка это контрольный электрод, другая обкладка — корпус запальника) в цепи начинает протекать электрический ток.
Основными причинами пропадания ионизации являются отсутствие требуемого соотношения газ-воздух запальника, загрязнение или обгорание ионизационного (контрольного) электрода. Еще одной причиной пропадания сигнала ионизации может являться уменьшение сопротивления между ионизационным электродом и корпусом запальника, которое чаще всего происходит из-за оседания токопроводящей пыли на запальное устройство.
Автомат горения часто выполняет не только функцию контроля наличия пламени — на нем строиться вся автоматика управления розжигом горелки, как, например, это реализовано в автомате горения ASL50P фирмы Hegwein.
Как правило, ионизационный электрод размещается вдоль оси запальной горелки, конец электрода должен находиться в «корне» пламени запальника. В некоторых запальных устройствах ионизационный электрод выполняет функцию запального электрода. В этом случае на него в течении фиксированного времени подается высокое напряжение с запального трансформатора для поджига запальника. После того как поджиг запальника произведен контрольный электрод переходит в режим контроля ионизации – цепи поджига отключаются и электрод соединяется с входом автомата горения. В этом случае возможна еще одна причина пропадания сигнала ионизации, связанная с обрывом во вторичной обмотке трансформатора. Но искра в этом случае может все равно нормально генерироваться, поэтому данную неисправность иногда трудно определить.
Большое значение для стабильной работы запального устройства имеет правильно выставленное соотношение газ-воздух. В большинстве случаев требуемые значения давления газа и воздуха приводятся изготовителем в паспорте запальной горелки. Не смотря на то, что говоря «соотношение газ-воздух» в большинстве случаев имеют в виду их объемное соотношение (один объем газа на десять объемов воздуха), но настраивают запальник, да и горелку, впрочем, тоже, по давлению, так как это сделать намного проще и дешевле. Для этого конструкцией запальника предусмотрено подключение контрольного манометра к газовому и воздушному тракту в определенных местах.
Ионизационный электрод крепиться к корпусу запальника через керамическую изолирующую втулку и соединяется с входом автомата горения экранированным одножильным кабелем. Если ионизационный электрод используется еще и в качестве запального, то с запальным трансформатором он соединяется специальным высоковольтным кабелем, например, ПВ-1. Изолирующая втулка изготавливается из керамики с большим содержанием Al2O3, которая характеризуется высокой механической прочностью, температурной стойкостью и электрической прочностью до 18 кВ. Ионизационный электрод изготавливается канталя — металлического сплава устойчивого к высоким температурам и электрохимической коррозии
Установки постоянно работающие при температурах свыше 800°С (мартеновские печи, например) могут и не оснащаться системами контроля наличия факела. Это связано с тем, что температура воспламенения газа находиться в пределах 645 – 750°С. Таким образом, в случае отрыва факела исходящий из сопла горелки газ воспламениться от разогретой кладки внутреннего пространства теплового агрегата. Очень часто перед соплом горелки выкладывают специальный горелочный камень – он воспламеняет поток газа и стабилизирует горение.
Для повышения надежности работы и уменьшения количества остановов установки из-за пропадания ионизации можно сделать контроль наличия пламени не постоянным, осуществляя его по схеме «ИЛИ». В этом случае, если установка прогрелась до температур свыше 750°С и сигнал ионизации с запальной горелки по какой то причине пропал, то основная горелка все равно продолжит работу.
Дополнительную информацию вы можете найти в разделе «Вопрос-ответ».
Посмотреть другие статьи.
knowkip.ucoz.ru
Датчики контроля пламени – особенности, устройство и принцип работы
Так как в промышленности сейчас очень широко используются топки для создания разного рода материала, то очень важно следить за ее стабильной работой. Чтобы обеспечить это требование, нужно использовать датчик контроля пламени. Контролировать наличие позволяет определенный набор датчиков, основное предназначение которого – это обеспечение безопасной работы разного рода установок, сжигающих твердое, жидкое или газообразное топливо.
Описание прибора
Кроме того, что датчики контроля пламени занимаются обеспечением безопасной работы топки, они также принимают участие и при розжиге огня. Этот этап может осуществляться в автоматическом или же полуавтоматическом режиме. Во время работы в этом же режиме они следят за тем, чтобы топливо сгорало с соблюдением всех требуемых условий и защиты. Другими словами, постоянное функционирование, надежность, а также безопасность работы топочных печей полностью зависят от правильной и безотказной работы датчиков контроля пламени.
Методы контроля
На сегодняшний день разнообразие датчиков позволяет применять различные методы контроля. К примеру, чтобы контролировать процесс сжигания топлива, находящегося в жидком или газообразном состоянии, можно использовать методы прямого и косвенного контроля. К первому методу можно отнести такие способы, как ультразвуковой или же ионизационный. Что касается второго метода, то в данном случае датчики реле-контроля пламени будут контролировать немного другие величины – давление, разрежение и т.д. На основе полученных данных система будет делать вывод о том, подходит ли пламя под заданные критерии.
К примеру, в газовых нагревателях небольшого размера, а также в отопительных котлах отечественного образца используются приборы, которые основаны на фотоэлектрическом, ионизационном или же термометрическом методе контроля пламени.
Фотоэлектрический метод
На сегодняшний день наиболее часто применяется именно фотоэлектрический способ контроля. В таком случае приборы контроля пламени, в данном случае это фотодатчики, фиксируют степень видимого и невидимого излучения пламени. Другими словами, аппаратура фиксирует оптические свойства.
Что касается самих приборов, то они реагируют на изменение интенсивности поступаемого потока света, которое выделяет пламя. Датчики контроля пламени, в данном случае фотодатчики, будут отличаться друг от друга по такому параметру, как длина волны, получаемой от пламени. Очень важно учитывать данное свойство при выборе прибора, так как характеристика спектрального типа пламени сильно отличается в зависимости от того, какой тип топлива сжигается в топке. Во время сгорания топлива существует три спектра, в котором формируется излучение – это инфракрасный, ультрафиолетовый и видимый. Длина волны может быть от 0,8 до 800 мкм, если говорить об инфракрасном излучении. Видимая же волна может быть от 0,4 до 0,8 мкм. Что касается ультрафиолетового излучения, то в данном случае волна может иметь длину 0,28 – 0,04 мкм. Естественно, что в зависимости от выбранного спектра, фотодатчики также бывают инфракрасными, ультрафиолетовыми или датчиками светимости.
Однако у них есть серьезный недостаток, который кроется в том, что у приборов слишком низкий параметр селективности. Это особенно заметно, если котел обладает тремя или более горелками. В таком случае велик шанс возникновения ошибочного сигнала, что может привести к аварийным последствиям.
Метод ионизации
Вторым по популярности является метод ионизации. В данном случае основа метода – это наблюдение за электрическими свойствами пламени. Датчики контроля пламени в таком случае называют датчиками ионизации, а принцип их работы основан на том, что они фиксируют электрические характеристики пламени.
У данного метода есть довольно сильное преимущество, которое заключается в том, что метод практически не имеет инерции. Другими словами, если пламя гаснет, то процесс ионизации огня пропадает моментально, что позволяет автоматической системе тут же прекратить подачу газа к горелкам.
Надежность устройств
Надежность – это основное требование к данным приборам. Для того чтобы достичь максимальной эффективности работы, необходимо не только правильно подобрать оборудование, но еще и правильно его установить. В данном случае важно не только выбрать правильный метод монтажа, но и место крепления. Естественно, что любой тип датчиков обладает своими преимуществами и недостатками, однако если неверно выбрать место установки, к примеру, то вероятность возникновения ложного сигнала сильно увеличивается.
Если подвести итог, то можно сказать, что для максимальной надежности системы, а также для того, чтобы максимально сократить количество остановок котла по причине возникновения ошибочного сигнала, необходимо устанавливать несколько типов датчиков, которые будут использовать абсолютно разные методы контроля пламени. В таком случае надежность общей системы будет достаточно высокой.
Комбинированное устройство
Необходимость в максимальной надежности привела к тому, что были изобретены комбинированные датчики-реле контроля пламени Archives, к примеру. Основное отличие от обычного прибора в том, что устройство использует два принципиально разных метода регистрации – ионизационный и оптический.
Что касается работы оптической части, то в данном случае она выделяет и усиливает переменный сигнал, который характеризует протекающий процесс горения. Во время горения горелки пламя нестабильно и пульсирует, данные фиксируются встроенным фотодатчиком. Зафиксированный сигнал передается на микроконтроллер. Второй же датчик ионизационного типа, который может получать сигнал только при условии, что существует зона электропроводности между электродами. Данная зона может существовать лишь при наличии пламени.
Таким образом, получается, что устройство оперирует двумя разными способами контроля пламени.
Датчики маркировки СЛ-90
На сегодняшний день один из довольно универсальных фотодатчиков, который может регистрировать инфракрасное излучение пламени – это датчик-реле контроля пламени СЛ-90. Данное устройство обладает микропроцессором. В качестве основного рабочего элемента, то есть приемника излучения, выступает полупроводниковый инфракрасный диод.
Элементная база данного оборудования подобрана таким образом, чтобы устройство могло нормально функционировать при температуре от –40 до +80 градусов по Цельсию. Если использовать специальный охлаждающий фланец, то эксплуатировать датчик можно при температуре до +100 градусов по Цельсию.
Что касается выходного сигнала датчика контроля пламени СЛ-90-1Е, то это не только светодиодная индикация, но и контакты реле «сухого» типа. Максимальная коммутационная мощность данных контактов составляет 100 Вт. Наличие этих двух выходных систем позволяет использовать приспособление этого типа практически в любой системе управления автоматического типа.
Контроль горелки
Достаточно распространенными датчиками контроля пламени горелки стали приборы LAE 10, LFE10. Что касается первого прибора, то он применяется в системах, где используется жидкое топливо. Второй датчик более универсален и может применяться не только с жидким топливом, но и с газообразным.
Чаще всего оба эти устройства применяются в таких системах, как двойная система контроля горелок. Может успешно применяться в системах жидкотопливных воздуходувных газовых горелок.
Отличительной особенностью данных устройств стало то, что можно устанавливать их в любом положении, а также крепить непосредственно к самой горелке, на пульте управления или же на распределительном щите. При монтаже этих устройств очень важно правильно уложить электрические кабели, чтобы сигнал доходил до приемника без потерь или же искажений. Чтобы этого достичь, нужно укладывать кабели от этой системы отдельно от других электрических линий. Также нужно использовать отдельный кабель для этих датчиков контроля.
fb.ru
Устройство контроля погасания горелки для газовых приборов.
Газовое оборудование значительно улучшает качество нашей жизни — это возможность приготовить пищу и обогреть жильё, но газ требует к себе повышенного внимания. При случайном погасании пламени конфорки газовой плиты или горелки отопительного котла — а это может случиться, когда конфорку заливает кипящая жидкость из кастрюли или пламя задуло сквозняком — газ может заполнить помещение и достаточно небольшой искры, чтобы случился взрыв. Этого не случится, если ваши газовые приборы оборудованы системой безопасности Gas Control, которая состоит из термоэлектрического датчика, располагаемого в пламени горелки и защитного электромагнитного клапана. При наличии пламени на горелке термоэлектрический датчик, а попросту термопара, вырабатывает небольшое напряжение, которое подаётся на катушку электромагнитного клапана и обеспечивает его удержание в открытом положении. При погасании пламени термопара остывает, ток прекращается и клапан отпускает, перекрывая газ. Некоторые модели газового оборудования содержат схемы автоматического повторного розжига горелки при её погасании, но после нескольких попыток такие схемы автоматически отключаются, т.к. такой авторозжиг может повлечь большие неприятности. Если газовая плита не оснащена заводской системой безопасности — изготовить её в домашних условиях вряд ли удастся. Можно только оснастить её системой контроля пламени с выдачей предупредительной сигнализации.
Для контроля пламени в котлах промышленных котельных чаще всего используют инфракрасные или ультрафиолетовые фотодатчики и ионизационные контрольные электроды. Хотя схема с использованием фотодатчика наиболее универсальна (контролирует горение любых видов топлива), она мало подходит для «домашнего» применения, т.к. электрическая схема достаточна сложна. Фотодатчик не должен реагировать на иные источники излучения, кроме пламени горелки и чувствительность его не должна меняться от температуры и прямой засветки от посторонних источников. Чтобы этого не случилось, в схеме используется глубокая АРУ, стабилизация рабочей точки фотодатчика, а также низкочастотный полосовой фильтр, пропускающий только пульсации сигнала, формируемые языками пламени. Для самостоятельного изготовления гораздо лучше подходит ионизационный метод.
Он широко используется в промышленных котельных, работающих на газе. Устройство представляет собой контрольный электрод из нихромовой проволоки диаметром 2 … 3 мм, закреплённый на изолирующей подставке из керамики или фторопласта, недалеко от горелки. Кончик электрода должен находиться в верхней трети языка пламени, но не должен касаться дна кастрюль. На контрольный электрод подаётся абсолютно безопасный, очень слабый сигнал переменного тока напряжением 220 В. При горении газового пламени происходит ионизация частиц газа и в зоне контрольного электрода , когда на нём положительная полуволна напряжения, тяжёлые положительно заряженные частицы опускаются к горелке, а электроны устремляются к электроду. В цепи протекает очень слабый электрический ток . При отрицательной полуволне тока в цепи нет. Из-за несимметричности токов на контрольном электроде возникает слабый отрицательный потенциал напряжением 3 … 8 В, который усиливается усилителем на полевом транзисторе и используется для сигнализации наличия пламени. Схема одного из устройств приведено на рисунке:
На основе этой схемы можно построить различные устройства контроля пламени и автоматической отсечки газа. Если в схему добавить триггер — можно автоматизировать запуск схемы сигнализации погасания пламени при первом его появлении . Добавив в схему таймер, можно автоматизировать начало отсчёта времени приготовления продукта или периодически включать напоминающий звуковой сигнал для забывчивых людей.
kravitnik.narod.ru
Возможно, вам это будет интересно:
meandr.org
Приборы контроля наличия пламени.
Методы контроля наличия пламени при сжигании в топках котлов газа и жидкого топлива можно подразделить на две разновидности: прямого и косвенного контроля. К методам прямого контроля относятся ультразвуковой, термометрический, ионизационный и наиболее часто применяемый фотоэлектрический. К методам косвенного контроля горения топлива можно отнести контроль за разрежением в топке, за давлением топлива в подающем трубопроводе, за давлением или перепадом его перед горелкой и контроль за наличием постоянного источника воспламенения.
В отечественных отопительных котлах, газовых калориферах и малых газовых нагревателях применяют приборы, которые основаны на ионизационном, фотоэлектрическом и термометрическом методах контроля. Ионизационный метод контроля основан на электрических процессах, возникающих и протекающих в пламени. К таким процессам можно отнести способность пламени проводить ток, выпрямлять переменный ток и возбуждать в электродах, помешенных в пламя, собственную э.д.с., а также периодическую пульсацию электрических колебаний в пламени, что во всех случаях обусловливается степенью ионизации пламени.
Фотоэлектрический метод контроля за горением жидкого топлива заключается в измерении степени видимого и невидимого излучения пламени фотодатчиками как с внешним, так и с внутренним фотоэффектом. Методы контроля наличия пламени нашли много конструктивных решений.
Термоэлектрический метод контроля. Устройство, основанное на термоэлектрическом методе контроля, состоит из термопары — датчика и электромагнитного клапана. Термопара помещена в зоне горения запальной горелки котла, а электромагнитный клапан установлен на газопроводе, по которому подается газ в запальную горелку.
Большое распространение получило устройство термоэлектрического контроля, разработанное институтом Мосгазпроект. Оно применяется в отопительных и пищеварочных котлах, газовых отопительных печах и емкостях водонагревателей. Принцип работы термоэлектрического устройства контроля пламени заключается в следующем. Запальная горелка действует постоянно, обеспечивая надежное зажигание и работу основных рабочих горелок. Газ на запальной горелке воспламеняется от термопары и обеспечивает защиту против отрыва пламени. Термопара вырабатывает э.д.с., за счет которой удерживается в открытом состоянии электромагнитный клапан.
При погасании пламени горелки температура термопары понизится настолько, что возбуждаемая ею э.д.с. будет недостаточна для удержания якоря в открытом положении, в результате чего клапан под действием пружины закроет поступление газа в запальник и горелку котла. Последующий розжиг котла может быть произведен только вручную после ликвидации причин, вызванных отключением подачи газа.
Ионизационный метод контроля. Ионизационный метод наличия пламени основан на использовании электрических свойств пламени. Устройства безопасности, основанные на этом методе, обладают преимуществом, состоящим в том, что они практически безынерционны,так как при погасании контролируемого пламени ионизационные процессы прекращаются, и это приводит практически к мгновенному отключению подачи газа в горелки котлоагрегата. Этот метод позволил разработать приборы контроля, основанные на электропроводности пламени, возникновении э.д.с. пламени, его вентильном эффекте и электрической пульсации. За рубежом уделяется наибольшее внимание методу контроля наличия пламени, основанному на вентильном эффекте.
В устройствах безопасности горения, где используется этот метод, не наблюдается ложного сигнала при замыкании в цепи датчиков.В системе комплексной автоматики для отопительных котлов был применен прибор контроля пламени, работа которого основана на вентильном эффекте. При наличии пламени переменное напряжение, приложенное между введенным в пламя электродом и корпусом горелки, выпрямляется.
При погасании пламени действие вентильного эффекта в межэлектродном переходе прекращается и управляющий сигнал на вход усилителя не поступает. Правая часть лампы запирается, реле обесточивается и дает команду на отключение газа. Аналогичное действие произойдет при замыкании электрода на корпус горелки.
Основным недостатком схемы прибора является то, что в ней открытое (рабочее) положение правой части триода обеспечивается закрытием левой его части. Метод контроля, использующий электрический потенциал пламени.Этот метод основан на введении в факел металлических электродов, которые дают разность потенциалов (э.д.с.), переменных по амплитуде, но постоянных по знаку. Величина э.д.с. пропорциональна разности температур между электродами и достигает 2 В. На этом принципе был создан прибор. Принцип работы прибора э.д.с. заключается в следующем при отсутствии пламени в анодных цепях лампы текут равные токи. Возникающий в обмотках реле Р1 и Р2 под действием тока магнитный поток равен нулю, так как обмотки поляризованного реле включены встречно. Якорь Реле в этом случае находится в положении, при котором цепь питания электромагнитного клапана-отсекателя разорвана, и газ в горелку не поступает. При появлении пламени возникает отрицательная э.д.с., которая подается на сетку левой части триода, что приводит к уменьшению тока в обмотке Р1. Под действием результирующего магнитного поля якорь реле изменит свое положение и, замкнув контакты, даст соответствующую команду. При погасании пламени или замыкании в цепи датчика э.д.с. исчезнет и схема придет в исходное положение.
Метод контроля, использующий электрическую пульсацию пламени. Для любого факела независимо от вида сжигаемого топлива и типа горелочного устройства характерным признаком является пульсация процессов, сопровождающих горение. К таким процессам относятся температура пламени, давление в камере сгорания, интенсивность излучения и ионизация факела пламени. Частота и амплитуда пульсаций зависят от скорости истечения газовоздушной смеси из горелки и условий перемешивания газа с воздухом. При неудовлетворительном перемешивании газа с воздухом горение сопровождается отдельными вспышками. Посредством чувствительного гальванометра можно замерить величину пульсации ионизационного тока. Это свойство пламени дает возможность обеспечить самоконтроль автоматики от опасного замыкания в цепи электродного датчика.
В схеме используется собственный пульсирующий потенциал, возникающий на электродах. При включении в цепь ионизационного датчика источника постоянного тока пульсацию на электродах можно усилить. В любом случае при замыканиях в цепи датчика, а также при погасании пламени подача управляющего сигнала на вход усилителя прекращается, и автоматика срабатывает на отключение газа. От сигнала постоянного тока данная схема не работает, так как на входе первого каскада включен конденсатор. Приборы контроля пламени этого типа, работающие на переменной составляющей электрического сигнала, очень чувствительны к помехам, частота колебания которых близка к частоте пульсации факела. Вследствие этого при установке таких приборов на объектах требуется обязательная экранировка входных цепей усилителя и линий связи, соединяющих электродный датчик с прибором.
назад к разделу «Статьи»
prommatika.ru
Ионизационный электрод контроля пламени: назначение и устройство
Ионизационные электроды используют в датчиках контроля пламени газовых горелок. Их главная задача — сигнализировать блоку управления о прекращении горения и необходимости перекрыть поступление газа. Эти устройства применяют для контроля непрерывности пламени в промышленных печах, домашних котлах отопления, газовых колонках и кухонных плитах. Нередко их дублируют фотодатчиками и термопарами, но в самых простых тепловых аппаратах ионизационный электрод является единственным средством контроля за зажиганием газа и непрерывностью его горения.
Назначение, принцип работы и конструкция ионизационного электрода
Если в нагревательном устройстве по каким-то причинам пропадает пламя, то сразу же должна быть прекращена подача газа. В противном случае он достаточно быстро заполнит объем установки и помещение, что может привести к объемному взрыву от случайной искры. Поэтому все нагревательные установки, работающие на природном газе, в обязательном порядке должны оснащаться системой слежения за наличием пламенем и блокировки подачи газа. Ионизационные электроды контроля пламени обычно выполняют две функции: во время зажигания газа от запальника разрешают его подачу при наличии устойчивой искры, а при исчезновении пламени подают сигнал на отключение газа основной горелки.
Принцип работы
Принцип работы ионизационного электрода основан на физических свойствах пламени, которое по своей сути является низкотемпературной плазмой, т. е. средой, насыщенной свободными электронами и ионами и поэтому обладающей электропроводностью и чувствительностью к электромагнитным полям. Обычно на него подается положительный потенциал от источника постоянного тока, а корпус горелки и запальник присоединяются к отрицательному. На рисунке ниже показан процесс возникновения тока между корпусом запальника и электродным стержнем, возвышающийся торец которого предназначен для контроля пламени основной горелки.
Процесс зажигания газа в нагревательной установке происходит в два этапа. На первом в запальник подается небольшое количество газа и включается электроискровое зажигание. При возникновении в запальнике устойчивого воспламенения происходит ионизация и начинает протекать постоянный ток в сотые доли миллиампер. Устройство контроля электрода подает сигнал системе управления, открывается электроклапан, и происходит поджигание основного потока газа. С этого момента электрод формирует управляющий сигнал уже от ионизации его пламени. Система управления настроена на определенный уровень ионизации, поэтому, если ее интенсивность снижается до заданного предела и ток в плазме падает, происходит отключение подачи газа и гашение пламени. После этого весь цикл с использованием запальника повторяется в автоматическом режиме до тех пор, пока процесс горения не станет устойчивым.
Основные причины срабатывания сигнализации о снижении уровня ионизации в пламени:
- неправильная пропорция газовоздушной смеси, формируемой в запальнике;
- нагар или загрязнение на ионизационном электроде;
- недостаточная мощность потока пламени;
- уменьшение сопротивления изоляции из-за накопления в запальнике токопроводящей пыли.
Одним из главных достоинств ионизационных электродов является мгновенная скорость срабатывания при погасании пламени. В отличие от них термопарные датчики формируют сигнал только через несколько секунд, которые им требуются для остывания. Кроме того, ионизационные электроды недороги, т. к. имеют очень простую конструкцию: металлический стержень, изолирующая втулка и разъем. Также они очень просты в эксплуатации и обслуживании, которое заключается в очистке стержня от нагара.
К недостаткам датчиков ионизационного контроля можно отнести их ненадежность при работе с газовым топливом, содержащим большие доли водорода или окиси углерода. В этом случае в пламени генерируется недостаточное количество свободных ионов и электронов, что приводит к невозможности удержания стабильного тока. Кроме того, этот метод может оказаться непригодным при работе в условиях повышенной запыленности.
Конструктивные особенности
Металлический стержень ионизационного электрода изготовлен из хромали — сплава железа с хромом и алюминием, который имеет жаростойкость около 1400 °C. Вместе с тем температура в верхней части пламени при горении природного газа может достигать 1600 °C, поэтому контрольные электроды размещают в его корне, где температура ниже — от 800 до 900 °C. Изолирующий цоколь ионизационного электрода, с помощью которого он монтируется на запальнике, представляет собой высокопрочную и жаростойкую керамическую втулку.
Ионизационный электрод может быть только контрольным, а может выполнять сразу две функции: запальную и контрольную. Во втором случае для зажигания пламени запальника на него подается высокое напряжение, формирующее искру. Через несколько секунд оно отключается, происходит переключение на питание постоянным током и переход в контрольный режим. Если электрод выполняет только контрольную функцию, то его изоляция, разъем и кабель должны соответствовать требованиям низковольтной аппаратуры, эксплуатируемой при высоких температурах. При использовании его в качестве запального сопротивление изоляции должно выдерживать на пробой напряжение 20 кВ, а подсоединение к блоку управления производиться высоковольтным кабелем.
При установке ионизационного электрода в корпус конкретной горелки необходимо применять изделие оптимальной длины. Слишком большой стержень будет перегреваться, деформироваться и быстрее покрываться нагаром. В случае малой длины возможны ситуации, когда ионизационный поток будет прерываться при уходе пламени от конца электрода к другому краю корпуса горелки. В реальных условиях длину электрода обычно подбирают экспериментальным путем.
В бытовых газовых плитах для зажигания используют электроискровые запальные электроды, а для контроля за пламенем — термопарные датчики. А почему в бытовых устройствах не применяют ионизационные электроды в раздельном или совмещенном виде? Ведь они дешевле термопар. Если вы знаете ответ на этот вопрос, поделитесь, пожалуйста, информацией в комментариях к данной статье.
wikimetall.ru
Электрическая схема котла
В последнее время стоимость централизованного отопления растет месяц от месяца, а качество предоставляемых услуг не всегда соответствует установленным нормам. В качестве выхода из положения многие жители сделали для себя выбор в пользу индивидуального отопления, в основе которого лежит котел и независимая разводка труб по жилищу. Хозяева ставят перед собой цель получить как можно более дешевое отопление с максимальной эффективностью и теплоотдачей. На данный момент в этой связи все большую популярность набирают одно- и двухконтурные газовые котлы отечественного и импортного производства. Отдельного внимания заслуживает схема электрического отопления, но целью этой статьи является объяснить, как работает электрическая схема котла, работающего на газу.
Современный газовый котел – это сложное электротехническое устройство, способное с помощью подводимого газа нагревать проходящую через него воду, которая, проходя через радиаторы, будет не только согревать комнаты, но и поступать к кранам горячего водоснабжения. Газовые котлы, как известно, могут быть настенными и напольными, атмосферными и турбированными. В независимости, имеет ли оборудование один контур или два, любой из современных экземпляров снабжен довольно сложной электрической схемой, отвечающей за многие его функции. В этой статье мы рассмотрим основные его узлы, принцип их работы, предназначение и управление функциональными модулями и блоками. В окончании статьи мы приведем пример схемы электрического котла, который используется в качестве замены газовому оборудованию в регионах, где цена газа довольно высока.
Основные функциональные блоки котла
Перед тем, как приступить к описанию электрической схемы котла нам необходимо описать его основные функциональные блоки, а так же объяснить их предназначение и принцип работы. В качестве примера будем использовать известный и популярный газовый настенный котел Ariston модели City (для Италии) / Uno (для других стран) модификации 24MFFI. В данном случае 24 – это максимальная мощность подогрева горячей воды в кВт, M – комбинированная система отопления и приготовления горячей воды, FF – определяет наличие в котле закрытой камеры сгорания и применение дополнительного вытяжного вентилятора (котел турбированный), I – электронный контроль пламени горелки. Открыв переднюю защитную крышку котла, мы увидим:
1. Реле с датчиком, определяющее давление воздуха, которое отслеживает состояние вытяжной системы и, в случае изменения давления за пределы допустимых границ, электроника отключает подачу пламени на газовую горелку, а индикатор внешней панели сигнализирует об ошибке. Это устройство называют релейным датчиком тяги.
2. Вентилятор – собственно, основной элемент «турбированности» котла, который осуществляет принудительную вытяжную вентиляцию продуктов горения газа, а так же дает возможность прикреплять к котлу довольно длинную вытяжную трубу. Причем прошивкой главного управляющего процессора предусмотрен неотключаемый режим предварительного управления вентиляцией, когда перед воспламенением горелки включается вентилятор. Если с ним возникнут проблемы, котел уйдет в ошибку.
3. Датчик температуры на выходе основного теплообменника (NTC) – очень важный элемент в электрической схеме любого котла, который контролирует температуру воды, передает данные в виде изменения напряжения на нем электронной плате управления. С помощью этого датчика котел может поддерживать постоянную заданную температуру на выходе, а так же сможет оперативно отключить горелку в случае неисправности отопительного водяного конура или отсутствия минимального давления воды в системе. Данный датчик имеет отрицательную температурную характеристику. При температуре в 0 С градусов его контакты имеют сопротивление 27кОм, а при температуре + 80 С, сопротивление датчика уменьшается до 1,5 кОм. Таким образом, при увеличении температуры воды на выходе теплообменника, на плату поступает большее напряжение управления, которое котел отрабатывает, уменьшая степень горения пламени. Датчик температуры организует обратную связь по температуре воды на выходе.
4. Электронная плата – основной контролирующий и регулирующий узел работы газового котла. На процессор платы приходят все напряжения с установленных датчиков, а так же подключены регуляторы температуры, индикатор давления/температуры и кнопки управления котлом. Электронная плата является «мозгом» котла. Ее описание и принцип работы мы рассмотрим ниже.
5. Расширительный бак – включен в контур отопительной системы как элемент регулировки избытка воды в случае ее неизбежного расширения при нагреве. За счет применения расширительного бака давление системы остается стабильным вне зависимости от температуры. Максимальная температура воды не должна превышать + 90 С градусов, а давление в системе не выше 3 bar.
6. Датчик температуры воды (NTC), приходящей по «обратке» в основной теплообменник (втекающей воды). Благодаря этому датчику процессор знает, насколько открыть газовую горелку и увеличить подачу газа, чтобы достичь подогрева воды в теплообменнике до заданного уровня.
7. Основной теплообменник – представляет собой змеевик с радиатором из цветных металлов (из меди или алюминия), в котором происходит подогрев воды с использованием специальной газовой горелки (8), расположенной непосредственно под ним. В теплообменнике предусмотрены отверстия для установки температурных датчиков 3 и 6.
8. Газовая горелка – управляется газовым клапаном, который представляет собой сложное устройство с управляемым процессором газовым портом. Газовый клапан состоит из: 1 основного газового порта, 2 управляющего порта, 3 модулятора давления газа (датчика, фиксирующего давления газа в системе). Газовый клапан — это очень сложное устройство, отъюстированное на заводе изготовителе. Его ремонт и настройка должны осуществляться только опытным и подготовленным специалистом.
9. Привод трехходового клапана – представляет собой 3-х выводное электромагнитное реле, которое переключает ход протекающей подогретой воды либо в отопительную систему, либо на кран горячей воды. Из-за ее плохого качества 3-х ходовой клапан часто ломается, в результате чего перестает работать отопление или из горячего крана течет холодная вода. Таким образом, происходит реализация и отопления, и подогрев горячей воды с помощью одного контура подогрева (котел одноконтурный).
10. Циркуляционный насос – производит прокачку воды по отопительной системе. Такие насосы так же устанавливают в газовые котлы Ferroli, Immergas, Hermann. Со временем, из-за старения и качества воды «мокрый» ротор насоса имеет свойство подклинивать, поэтому на его передней части предусмотрен винтовой болт, под которым присутствует сам ротор, который можно провернуть отверткой и осуществить принудительный пуск. Данная заглушка предназначена для спуска воздуха из жидкой роторной камеры. Подклинивание насоса с уходом котла в защиту из-за перегрева теплообменника – второй признак того, что котел и, собственно, сам насос нуждается в чистке и ревизии. Первым признаком является ухудшение обогрева помещения котлом, в результате чего владелец вынужден увеличивать температуру регулятором.
Кроме указанных элементов в процессе розжига особую роль играет генератор искры со специальным трансформатором зажигания. Генератор искры работает совместно с газовым клапаном и является неотъемлемой его частью. Он состоит из: 1 – вывода, подсоединенного к электроду розжига, 2 – крепление к датчику протока с заземляющим контактом, 3 – защищенным гнездом для подключения переменного сетевого напряжения 220 В.
Датчик протока воды – крепится за генератором искры и трансформатором зажигания непосредственно в систему ГВС. С помощью этого датчика система определяет наличие движения воды, а так же осуществляется контроль работы циркуляционного насоса. Как правило такие датчики бывают двух типов. Дешевые датчики имеют магнитный поплавок с герконом. Более дорогие модели – вентилятор и датчик Холла. Дорогие датчики могут определять не только наличие потока воды, но и ее скорость.
Электронная плата управления и электрическая схема котла
Электронная плата управления
Как мы уже говорили, плата управления осуществляет полный контроль и управление всеми режимами и функциями нашего котла. В основе ее работы лежит фирменный микропроцессор, который управляет работой всей электронной части и память Atmel 93C56WP, в которую зашита прошивка котла. Блок питания аналоговый, со стабилизацией напряжения на «кренках». Он не имеет защит от перегрузки и превышения лимитов напряжения питания. Именно поэтому стоит заранее побеспокоиться о специализированных сетевых фильтрах и барьерах. Это же утверждение касается любого другого котла. Для управления прессостатом, трехходовым и газовым клапаном, используются электромагнитные реле на 33 вольта. Утеря контроля пламени – основная болезнь этой модели. В этом случае необходимо проверить радиоэлементы, которые относятся к этой функции, а особенно неполярный конденсатор C903 на 0.1 мкФ х 275В (на рисунке внизу синий). Так же необходимо проверить рядом стоящие транзисторы, оптрон cny17-3 и обрыв резисторов мощностью 1 Вт. Так же можно воспользоваться схемой ниже. В различного рода проблемах часто бывают виноваты сами управляющие реле (при включении/выключении режимов котла они должны тихо щелкать), а так же микросхема ULN2003N, в которой находятся 7 ключей Дарлингтона. Сигналы с микропроцессора приходят на микросхему, усиливаются ею и передаются на реле.
Электрическая схема котла
Электрическая схема котла состоит из обозначения основных блоков электронных плат и радиоэлементов на них, которые участвуют в работе, настройке и управлении газовым котлом. На рисунке ниже:
А – регулятор температуры котла (по паспорту переключатель зима — лето), а по сути, переменное сопротивление, варьирующее напряжением управления.
B – кнопка сброса ошибки и перезапуска котла (Reset).
С – включение/выключение котла (Power).
D – кнопка включения режима комфорта.
E – сопротивление, регулирующее температуру горячей воды в кране.
F, G, H, I – светодиоды — индикаторы контроля работы или неисправности оборудования.
J – гнездо для подключения внешнего таймера
K и L – реле подачи питания на насос и трехходовой клапан соответственно.
M и N – реле управления вентилятором и газовым клапаном.
O – разъем подключения пульта управления.
P, Q, R, S – перемычки, которые устанавливают мощность искрообразования, задержки воспламенения, выбор температурного режима и плавного воспламенения с максимальной мощностью.
T – специальный двухпроводный разъем, позволяющий подключить внешний термостат для поддержания заданной температуры в точке расположения термостата.
U – питающий трансформатор, являющийся составной частью бока питания электронной схемы управления котлом.
А11 – датчик наличия пламени
Разъем CN301 содержит контактную колодку A02 – A05, к которой подключаются газовый клапан, привод трехходового клапана, циркуляционный насос, трансформатор розжига.
К разъему CN201 (контакты А06 – А10) подключаются температурные датчики подачи и возврата воды, датчик дымохода (прессостат), датчик протока воды, модулятор.
Перемычка CN102 в положении А позволяет настроить регулятором температуры отопления мощность воспламенения горелки котла при использовании разного газа (сжиженного или газообразного) с различной калорийностью. Во время настройки красный индикатор будет мигать. Настройка подразумевает регулировку давления газа. Согласно заводским настройкам она соответствует 60% от общей мощности котла.
CN101 в положении А отключает задержку воспламенения, в положении B – задержка на 2 минуты.
CN104 – устанавливает пределы потенциометра температуры отопления. В положении А это 38 – 44 градуса, в положении В это 42 – 82 градуса.
CN100 производится настройка максимальной мощности отопления и воспламенения.
Конечно, приведенный котел Ariston UNO 24MFFI далек от эталонного примера, однако он в большей части раскрывает суть работы многих настенных газовых котлов. О принципе работы котла, его функциональности можно более подробно узнать из сервисной инструкции, которую можно скачать в интернете.
Принцип работы и электрическая схема котла, работающего на электричестве
Судя по названию, становится понятно, что основным источником энергии для такого котла является электричество. Основным нагревательным элементом электрического котла является нагревательный элемент или ТЭН. Визуально такой котел ничем не отличается от обыкновенного газового котла, однако, принцип его работы полностью другой. Использование электричества позволяет удешевить его внутренний конструктив, но отказаться от основных датчиков температуры невозможно, поскольку это в значительной степени увеличит его аварийность. Именно поэтому в электрическом котле присутствует не менее сложная система электронного управления и стабилизации мощности ТЭНа. Электрический котел состоит из:
1. Воздушного автоматического клапана, стравливающего воздух и защищающий от «завоздушивания» системы.
2. Ограничителя температуры, защищающего систему котла и внутренние радиаторы помещения от перегрева.
3. Электронного пульта управления – представляющего собой специальную схему гибрида ПИД регулятора, анализирующую данные от различных датчиков котла и поддерживающую постоянную установленную температуру, а так же регулятора мощности. В самом простом варианте это тиристорная схема. В нашем случае это отдельная плата.
4. Управляемый электронным пультом управления регулятор мощности.
5. Термобак, в который встраивается нагревательный элемент. Производится из малоокисляемых цветных металлов.
6. Циркуляционный насос с «мокрым ротором» — нагнетает давление горячей воды в системе.
7. Водный узел – используется в связке с платой управления для подачи сигнала о достаточном давлении в системе и наличию циркуляции воды для подачи напряжения на ТЭНы.
8. Манометр – отображает текущее значение давления в системе.
9. Сбросовый клапан безопасности – в случае превышения критического давления (обычно более 3 бар) открывается и сбрасывает излишки воды в системе.
Данные котлы имеют высокое энергопотребление до 15 кВт. Поэтому их применяют большей частью для больших помещений и подключают к трехфазной сети переменного тока. На рисунке ниже представлен пример подключения электрического трехфазного котла.
elektronika-muk.ru